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Abstract

This work is concerned with two image-processing problems, image deconvolution with
incomplete observations and data fusion of spectral images, and with some of the algo-
rithms that are used to solve these and related problems.
In image-deconvolution problems, the diagonalization of the blurring operator by

means of the discrete Fourier transform usually yields very large speedups. When there
are incomplete observations (e.g., in the case of unknown boundaries), standard deconvo-
lution techniques normally involve non-diagonalizable operators, resulting in rather slow
methods, or, otherwise, use inexact convolution models, resulting in the occurrence of
artifacts in the enhanced images. We propose a new deconvolution framework for images
with incomplete observations that allows one to work with diagonalizable convolution
operators, and therefore is very fast. The framework is also an efficient, high-quality
alternative to existing methods of dealing with the image boundaries, such as edge ta-
pering.
The data-fusion problem of inferring a hyperspectral image with high spectral and

spatial resolutions from a spatially-degraded hyperspectral image and a multispectral
image retrieved from the same geographical area has been a subject of recent research.
We formulate this problem as the minimization of a convex function containing two
quadratic data-fitting terms and an edge-preserving regularizer. The regularizer, a form
of vector total variation, promotes piecewise-smooth solutions with discontinuities aligned
across the hyperspectral bands. We obtain an algorithm that outperforms the state of
the art, as illustrated in a series of experiments.
The algorithms that are used to solve problems with sparsity-inducing regularizers are

usually generic, in the sense that they do not take into account the sparsity of the solution
in any particular way. However, methods such as the semismooth Newton and the active-
set ones are able to take advantage of this sparsity to accelerate their convergence. We
show how to extend these algorithms in different directions, and study their convergence
in (possibly infinite-dimensional) real Hilbert spaces. Additionally, we discuss the use of
second-order information in the alternating-direction method of multipliers when solving
`2+regularizer minimization problems.
Kewwords: Deconvolution, incomplete observations, hyperspectral imaging, superresolu-

tion, data fusion, pansharpening, convex nonsmooth optimization, primal-dual optimization,
alternating-direction method of multipliers (ADMM), semismooth Newton method, forward-
backward method, monotone inclusion, averaged operator, variable metric.
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Resumo

Esta tese aborda dois problemas de processamento de imagem, a desconvolução de ima-
gem com observações incompletas e a fusão de dados de imagens espectrais. Aborda
igualmente alguns dos algoritmos que são usados para resolver estes e outros problemas.
Em problemas de desconvolução de imagem, a diagonalização do operador de des-

focagem através da transformada discreta de Fourier permite geralmente obter ganhos
significativos de velocidade. Quando algumas das observações estão incompletas (por
exemplo, no caso de as fronteiras serem desconhecidas), as técnicas de desconvolução
clássicas envolvem normalmente operadores não diagonalizáveis, o que resulta em méto-
dos bastante lentos, ou, então, usam modelos de convolução inexatos, o que resulta no
aparecimento de efeitos espúrios nas imagens restauradas. Neste contexto, propõe-se na
presente tese uma nova abordagem à desconvolução de imagens com observações incom-
pletas. Esta abordagem permite trabalhar com operadores de convolução diagonalizáveis
sendo, portanto, muito rápida. É igualmente uma alternativa eficiente e de alta qualidade
a métodos existentes para lidar com as fronteiras de imagens como edge tapering.
O problema de fusão de dados, que diz respeito à produção de uma imagem hiperes-

pectral de altas resoluções espacial e espectral a partir de uma imagem hiperespectral
degradada no espaço e de uma imagem multiespectral, ambas adquiridas a partir da
mesma área geográfica, tem sido alvo de atenção recente. Nesta tese, este problema foi
formulado como a minimização de uma função convexa contendo dois termos quadráticos
de ligação aos dados e um termo de regularização que preserva os contornos da imagem.
O termo de regularização, que é uma forma vectorial do operador de variação total, pro-
move soluções suaves por troços com as descontinuidades alinhadas ao longo das bandas
hiperespectrais. É obtido um algoritmo cujo desempenho supera o de outros métodos,
conforme ilustrado numa série de experiências.
Os algoritmos que são usados para resolver problemas com termos de regularização

que impõem esparsidade são habitualmente genéricos, no sentido em que consideram a
esparsidade da solução de nenhuma forma em particular. No entanto, métodos como os
de Newton semi-suave e de conjunto activo são capazes de tirar partido dessa esparsidade
para acelerar a sua convergência. É apresentada nesta tese uma forma de estender estes
algoritmos em diferentes direções e de estudar a sua convergência em espaços de Hilbert
reais (possivelmente infinitos). Para além disto, é discutido o uso de informação de
segunda ordem no método dos multiplicadores de direção alternada (ADMM) quando
este é usado para resolver problemas de minimização do tipo `2+regularizador.
Palavras-chave: Desconvolução, observações incompletas, imagem hiperespectral, super-

resolução, fusão de dados, pansharpening, otimização convexa não-suave, otimização primal-
dual, método dos multiplicadores de direção alternada (ADMM), método de Newton semi-suave,
método explícito-implícito, inclusão monotónica, operador médio, métrica variável.

v





Résumé

Cette thèse s’intéresse à deux problèmes de traitement d’image, la déconvolution d’image
avec des observations incomplètes et la fusion d’images spectrales. Elle s’intéresse aussi
à certains aspects algorithmiques nécessaires pour résoudre ces problèmes, et d’autres.
Dans les problèmes de déconvolution d’image, la diagonalisation de l’opérateur de flou

par la transformation de Fourier discrète permet généralement des gains de vitesse consi-
dérables. Lorsqu’il y a des observations incomplètes (par exemple, dans le cas de frontières
inconnues), les techniques de déconvolution classiques impliquent généralement des opé-
rateurs non diagonalisables, entraînant des méthodes plutôt lentes ou, sinon, utilisent des
modèles de convolution inexacts, ce qui entraîne l’apparition de défauts dans les images
nettes. Dans ce contexte, on propose un nouveau cadre de déconvolution pour les images
avec des observations incomplètes. Ce cadre permet de travailler avec des opérateurs de
convolution diagonalisables et est donc très rapide. Il est aussi une alternative efficace et
de haute qualité aux méthodes existantes de traitement des frontières d’une image.
Le problème de la fusion de données qui concerne la production d’une image hyper-

spectrale de hautes résolutions spatiale et spectrale à partir d’une image hyperspectrale
dégradée dans l’espace et d’une image multispectrale extraites de la même zone géogra-
phique, a fait l’objet d’une attention récente. Dans cette thèse, ce problème est formulé
comme la minimisation d’une fonction convexe contenant deux termes quadratiques d’at-
tache aux données et un terme de régularisation qui préserve les contours de l’image. Le
terme de régularisation, qui est une forme vectorielle de l’opérateur de variation totale,
favorise des solutions lisses par morceaux avec les discontinuités alignées au travers des
bandes hyperspectrales. La méthode proposée est validée sur différents jeux de données
et comparée à d’autres méthodes de l’état de l’art, par rapport auxquelles elle produit
des performances supérieures.
Les algorithmes qui sont utilisés pour résoudre des problèmes avec des termes de ré-

gularisation imposant de la parcimonie sont habituellement génériques, au sens qu’ils
ne tiennent pas compte de la parcimonie de la solution d’une manière particulière. Ce-
pendant, des méthodes telles que l’algorithme de Newton semi-lisse et par ensemble actif
peuvent profiter de cette parcimonie pour accélérer leur convergence. Une façon d’étendre
ces algorithmes dans des directions différentes et d’étudier leur convergence dans des es-
paces hilbertiens réels (éventuellement de dimension infinie) est présentée dans cette
thèse. Par ailleurs, nous discutons de l’utilisation d’information de second ordre dans
la méthode des multiplicateurs de direction alternée (ADMM) lors de la résolution de
problèmes de minimisation du type `2+regularizateur.
Mots-clés :Déconvolution, observations incomplètes, imagerie hyperspectrale, super-résolution,

fusion de données, pansharpening, optimisation convexe nonlisse, optimisation primale-duale, mé-
thode des multiplicateurs de direction alternée (ADMM), méthode de Newton semi-lisse, méthode
explicite-implicite, inclusions monotones, opérateur moyenné, métrique variable.

vii





Preface

This dissertation addresses three topics that are related to inverse problems in image
processing: (1) image deconvolution with incomplete observations, (2) data fusion of
spectral images, and (3) algorithms that are used to solve (among others) inverse prob-
lems in image processing. After providing some background, we start by considering
the problem of image deconvolution with incomplete observations. We propose a new
framework that can be used to deconvolve images with pixels that are not observed. The
algorithms obtained from this framework are very fast, namely because we are allowed
to work with diagonalizable convolution operators. We alternate the estimation between
the non-observed pixels and the sharp image. The framework can also be used to ob-
tain an efficient, high-quality alternative to existing methods of dealing with the image
boundaries, such as edge tapering. It can be used with any fast deconvolution method,
e.g., a fast Fourier Transform (FFT)-based one. We give an example in which a state-of-
the-art method that assumes periodic boundary conditions is extended, through the use
of this framework, to unknown boundary conditions. Furthermore, we propose a specific
implementation of this framework that is based on the alternating-direction method of
multipliers (ADMM), and provide a proof of convergence for the resulting algorithm.
This implementation can be seen as a “partial” ADMM, since not all variables are dual-
ized. We report experimental comparisons with other primal–dual methods, where the
proposed one performed at the level of the state of the art. Four different kinds of appli-
cations were tested: deconvolution, deconvolution with inpainting, superresolution, and
demosaicing, all with unknown boundary conditions.
We then consider the problem of fusing hyperspectral images (HSIs) with multispectral

images (MSIs). In general, HSIs have high spectral resolution and low spatial resolution,
whereas MSIs have low spectral and high spatial resolutions. Due to the increasing
availability of HSIs and MSIs retrieved from the same geographical area, the problem of
inferring images that combine the high spectral and high spatial resolutions of HSIs and
MSIs, respectively, has been the focus of recent research. We formulate this problem as
the minimization of a convex function containing two quadratic data-fitting terms and
an edge-preserving regularizer. The data-fitting terms account for blur, different reso-
lutions, and additive noise. The regularizer, a form of vector total variation, promotes
piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands.
The resulting optimization problem is hard to solve due to the presence of a downsam-
pling operator accounting for the different spatial resolutions, to the non-quadratic and
non-smooth nature of the regularizer, and to the very large size of the HSI to be esti-
mated. We deal with these difficulties by exploiting the fact that HSIs typically lie in
low-dimensional subspaces and by tailoring an instance of ADMM to this optimization
problem. The spatial and the spectral blur operators linked, respectively, with the HSI
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and MSI acquisition processes are also estimated. We obtain an effective algorithm that
outperforms the state of the art, as illustrated in a series of experiments. In addition,
we also discuss the contributions made by the writer in two different, though related,
works. The first contribution is concerned with an issue present in the pansharpening
algorithms based on the detail-injection model. Such algorithms are usually comprised of
two steps: extraction of the spatial details of the panchromatic image (PAN), and their
subsequent injection into the MSI. In order to obtain these spatial details, one may use
a procedure that requires the application of a particular low-pass filter to the PAN. We
propose a new algorithm for estimating this low-pass filter that only makes use of the
observed MSI and PAN. The second contribution is concerned with the algorithms used
to fuse hyperspectral and multispectral images that take advantage of the fact that HSIs
usually lie in a low-dimensional space. These methods perform at the level of the state
of the art if the HSIs actually lie in such a space. However, if the dimensionality of this
space is not low, in the sense that it is larger than the number of multispectral bands,
the performance of these methods is not satisfactory. We propose a local approach to
cope with this difficulty by exploiting the fact that real-world HSIs are locally low rank,
which is a consequence of the fact that, in a small spatial neighborhood, the number of
different materials is typically small.
Finally, we consider algorithms used to solve problems involving sparsity-inducing

regularizers. Typically, these are generic, in the sense that they do not take into account
the sparsity of the solution in any particular way. However, some of them, such as
semismooth Newton methods, are able to take advantage of this sparsity to accelerate
their convergence. We show how to extend these algorithms in different directions, and
study the convergence of the resulting algorithms in real Hilbert spaces. We base our
analysis on a variation on the well-known Krasnosel’skĭı–Mann scheme, and show that
these methods are a particular case of this variation. Additionally, we discuss the use
of second-order information in ADMM when used to solve `2-regularized minimization
problems. In particular, we compare and contrast ADMM with a particular instance of
a variable–metric primal–dual method.

Contributions

The original contributions discussed in this work can be listed as follows:

1. a new deconvolution framework for images with incomplete observations;

2. a specific implementation of this framework based on ADMM and a proof of the
convergence of this implementation;

3. a data-fusion algorithm that combines the high spectral and high spatial resolutions
of hyperspectral images and multispectral images, respectively;

4. a method that estimates the spatial and the spectral blur operators linked with
the acquisition processes of the hyperspectral images and multispectral sensors,
respectively;
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5. the study of an interpretation of semismooth Newton methods as a variation on
the well-known Krasnosel’skĭı–Mann scheme and subsequent analysis of extensions
of these methods; and

6. a discussion showing that ADMM shares some similarities with a second-order
primal–dual method when used to solve `2-regularized minimization problems.

Additionally, we also briefly describe the original contributions of the writer in the
context of work done in collaboration with other authors. These contributions are

7. a method that estimates the low-pass filter to be used in pansharpening algorithms
based on the detail-injection model and that makes use of only the observed MSI
and PAN, and

8. a local approach to the algorithms used to fuse HSIs and MSIs, which takes advan-
tage of the fact that HSIs usually lie in a low-dimensional space.

The contributions indicated by points 1-4, 7, and 8 have been the subject of publica-
tion, whereas the ones indicated by points 5 and 6 still have not. The publications, in
chronological order, are the following:

[1] G. A. Licciardi, M. A. Veganzones, M. Simões, J. Bioucas-Dias, and J. Chanussot,
“Super-resolution of hyperspectral images using local spectral unmixing,” in IEEE
Workshop Hyperspectral Image Signal Proces.: Evolution Remote Sens., Lausanne,
Switzerland, June 2014;

[2] M. A. Veganzones, M. Simões, G. Licciardi, J. Bioucas-Dias, and J. Chanussot,
“Hyperspectral super-resolution of locally low rank images from complementary
multisource data,” in IEEE Int. Conf. Image Processing, Paris, France, Oct. 2014,
pp. 703–707;

[3] M. Simões, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “Hyperspectral image
superresolution: An edge-preserving convex formulation,” in IEEE Int. Conf. Image
Processing, Paris, France, Oct. 2014, pp. 4166–4170;

[4] G. Vivone, M. Simões, M. Dalla Mura, R. Restaino, J. Bioucas-Dias, G. Licciardi,
and J. Chanussot, “Pansharpening based on semiblind deconvolution,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 4, pp. 1997–2010, Apr. 2015;

[5] M. Simões, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex formu-
lation for hyperspectral image superresolution via subspace-based regularization,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373–3388, June 2015;

[6] L. Loncan, L. B. Almeida, J. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon,
S. Fabre, W. Liao, G. Licciardi, M. Simões, J.-Y. Tourneret, M. A. Veganzones,
G. Vivone, Q. Wei, and N. Yokoya, “Comparison of nine hyperspectral pansharp-
ening methods,” in IEEE Int. Geosci. Remote Sens. Symp., Milan, Italy, July 2015;
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[7] ——, “Hyperspectral pansharpening: A review,” IEEE Geosci. Remote Sens. Mag.,
vol. 3, no. 3, pp. 27–46, Sept. 2015;

[8] M. A. Veganzones, M. Simões, G. Licciardi, N. Yokoya, J. Bioucas-Dias, and J. Chanus-
sot, “Hyperspectral super-resolution of locally low rank images from complementary
multisource data,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 274–288, Jan.
2016;

[9] M. Simões, L. B. Almeida, J. Bioucas-Dias, and J. Chanussot, “A framework for fast
image deconvolution with incomplete observations,” IEEE Trans. Image Process.,
vol. 25, no. 11, pp. 5266–5280, Nov. 2016.

Copies of these publications are included at the end of this work.

Outline

The structure of this work is as follows. In Part I, we provide some background. In
particular, in Chapter 1, we discuss some characteristics of inverse problems by focusing
on the problem of image deblurring. We also discuss regularization problems, and give
a brief overview of remote-sensing hyperspectral imaging. In Chapter 2, we list some of
the algorithms that are used to solve imaging and other large-scale problems. We discuss
smooth and nonsmooth minimization, as well as splitting methods and semismooth New-
ton ones. We then introduce some notions of operator theory. In Part II, we describe, in
some detail, the original contributions of this work. More specifically, in Chapter 3, we
discuss the contributions numbered 1 and 2, above. Then, in Chapter 4, we discuss the
contributions numbered 3, 4, 7, and 8. Finally, in Chapter 5, we discuss the contributions
numbered 5 and 6. Part III contains the publications listed in the previous section.

The figure below schematizes the structure of this work.
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Ch. 1 Part I

Image deblurring;
regularization;
remote sensing

hyperspectral imaging

Ch. 2 Part I

Splitting methods;
ADMM;
SSNM;

operator theory

Ch. 3 Part II

Fast deconvolution
with incomplete
observations

Ch. 4 Part II

HySure;
Deconvolution-based

pansharpening;
HSI SR of locally
low-rank images

Ch. 5 Part II

Operator-weighted
averaged operators;
2nd-order information

in ADMM

Part III

Refs. [1-8]
Part III

Ref. [9]

where we have used the following acronyms:
ADMM: alternating-direction method of multipliers,
SSNM: semismooth Newton method,
HySure: hyperspectral superresolution method, and
HSI SR: hyperspectral image superresolution.
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1. An approach to digital imaging
inverse problems

This chapter describes, in broad strokes, an approach that is widely used to solve some
problems in imaging, namely the ones that assume the data to be generated by a given
stochastic model.1 This approach consists in using the framework of inverse problems.
In what follows, we briefly discuss the conceptual advantages of this approach by using
image deconvolution as an example. We also give a brief overview of remote-sensing
hyperspectral imaging.
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1.1. Introduction

Digital images have become ubiquitous in our modern society. They are not only used
to capture our life’s most memorable moments, but find numerous applications in as-
tronomy, medicine, geoscience, engineering, and other fields. Since the advent of digital
imaging in the 60s, it has become progressively cheaper to capture and store a large num-
ber of images. These images can be processed to enhance some of their characteristics—
such as their resolution or sharpness—or to facilitate their storage and transmission. In
addition, digital images can be generated artificially, both for human and for machine
perception. The use of processing methods involving these images is referred to as digital
image processing. Many of these methods can be framed as approaches to tackle inverse
problems, which we define next.
Consider a physical system that is observed by some sensors producing a set of ob-

servations (or measurements). Assume that we are able to mathematically model this
1This is in contrast to the approach that treats the data-generating mechanism as a “black box”. For
a discussion on the merits of these two approaches, we refer the reader to Breiman [10].
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system, and that the resulting model has a set of unknowns—usually termed original (or
target) data—reflecting the underlying physical reality. In science and engineering, it is
rare to have knowledge of both the original data and the observations. Often, one tries
to find estimates of one from the other. The problem of finding the observations from
the original data is called the direct problem (or forward problem), whereas finding the
original data from the observations is called the inverse problem. As an example of a
physical system, consider a digital camera acquiring visual information of its surround-
ings in the form of images (these are the aforementioned observations). Frequently, the
images appear to be noisy, suggesting that they were degraded by some mechanism. The
imaging system can be modeled, under certain assumptions, as follows: the noisy image
is assumed to be given by the sum of two terms, where one is the noise itself, which
depends on the camera, and the other is a non-noisy version of the observed image,
which corresponds to the original image. Obtaining an estimate of this image is, then,
the inverse problem, which, in this context, is often called image denoising. In contrast,
the noisy image is the solution to the direct problem, given knowledge of the camera and
the original image.
Another example of an inverse problem is image deblurring, i.e., the recovery of sharp

images from blurred ones. Consider again the scenario discussed in the previous para-
graph. An additional image degradation can be due to depth-of-field effects and defo-
cusing. These degradation mechanisms produce images that are not only noisy but also
blurred. Other phenomena can occur that also result in a decrease in image sharpness,
e.g., camera motion or the propagation of light through the atmosphere. A model for
a camera that produces blurred images is discussed in Section 1.2. In these problems,
the model depends on a number of parameters that characterize the degradation mecha-
nisms. For example, if we assume the noise to follow a certain distribution, examples of
those parameters are the parameters that characterize this distribution.
Image processing techniques can be used to solve specific problems in all the fields that

make use of digital images. One of these fields is remote sensing, the science of obtaining
information about an object remotely, i.e., from a distance. In the case of earth remote
sensing, this is done typically by using sensors on-board satellites or airplanes. Some of
these sensors capture optical spectral images, which are sets of 2-D images representing
the reflectance or radiance of an object across different bands of the electromagnetic (EM)
spectrum. Each individual 2-D image corresponds to a spectral band. The number of
2-D images is related with the spectral resolution of the spectral image. Enhancing the
resolution of these images, both in the spatial and spectral domain, is another example of
an inverse problem. In this case, the system is usually modeled as a degradation process
acting on a sharp spectral image. This degradation, which occurs both in the spectral
and spatial domains, is a consequence of the characteristics of the sensor that was used
to capture the image.
Optical spectral images are usually classified into two categories: multi- and hyperspec-

tral images. The distinction between the two is not clear-cut, but multispectral images
typically have around ten channels, whereas hyperspectral images have more than one
hundred. The sensors used to capture each category of images have different charac-
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teristics, and there usually is a trade-off between their spectral and spatial resolutions.
Typically, a multispectral sensor produces images with relatively high spatial and low
spectral resolutions, whereas a hyperspectral sensor produces images with relatively high
spectral and low spatial resolutions. When images of both categories are captured from
the same scene, it is often of interest to combine them in order to obtain an image with
both high spectral and high spatial resolutions. This combination, again, can be ad-
dressed within the framework of inverse problems. The system is usually modeled as two
different degradations processes acting on a sharp spectral image: one corresponding to
the hyperspectral sensor and the other to the multispectral one (this model is discussed
in Section 4.1).
The main advantage of analyzing all the different problems described in the previous

paragraphs as inverse problems lies in the fact that this can be done in a systematic way.
Recall that the end goal of solving an inverse problem is to recover the original data
from the observations. This is typically harder to do than the reverse. As an example,
consider the inverse problem of image deblurring: it requires the estimation of not only
a deblurred image but also of the parameters associated with the camera. It can then
be helpful to devise ways of using additional information about the system under study.
This can be done within the framework under discussion, as we show next.
When formulating an inverse problem, we usually need to address four different points.

These are: (a) the selection of an observation model describing the underlying physical
reality, (b) the establishment of a criterion quantifying how well the observations are
described by the model, (c) the design of a way to incorporate any additional information
about the parameters, if available, and (d) the selection of a computational approach to
tackle the inverse problem. Point (a) is, in and of itself, a separate problem known
as a model identification. Regarding points (b) and (c), the approach followed in this
work considers the solution of an inverse problem to be the solution of an optimization
problem, where some of the terms of its cost function are related to point (b), and others
are related to point (c). Point (d), again in the case of considering the inverse problem
as an optimization one, corresponds to the selection of the algorithm used to solve it.
In short, in order to solve inverse problems, and assuming that they are formulated as

optimization problems, we need to at least consider the following points:

1. the observation model used to describe the physical system,

2. the criterion used to evaluate how well the model fits the available observations,

3. additional information about the desired solution, and

4. the algorithm used to solve the optimization problem.

Each of these points is currently a subject of intense research, and the methods that
are proposed to tackle imaging problems need to always address them. In fact, differences
between competing methods can be traced to differences in approach to these points. On
the other hand, problems in very different domains may share the same approach to one
(or more) of these points.
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1.1.1. Notation

Image processing is at a crossroads of different fields, namely computer science, electrical
engineering, and applied mathematics. The communities working on these fields tend
to use different notations for the same objects. Since this work has contributions in
the field of signal processing and in the field of convex analysis and optimization, our
notation tries to maintain consistency with both fields. We follow the notation used by
Bauschke and Combettes [11] when considering optimization algorithms in the context of
operator theory, and we follow the so-called vector notation used in the image-processing
community when dealing with digital images or other finite-dimensional objects. A list
of symbols and notation is given on page xix.
In this work, calligraphic uppercase letters denote Hilbert spaces, as in X , V. All

the spaces under consideration are real and might be infinite.2 We denote the scalar
product of a Hilbert space by 〈·, ·〉 and the associated norm by ‖ · ‖. 2V denotes the
power set of V, i.e., the set of all subsets of V. An operator (or mapping) A : X → V
maps each point in X to a point in V. A set-valued operator A : X → 2V maps each
element in X to a set in V. Id denotes the identity operator. L(X ,V) denotes the
space of linear operators from X to V and B(X ,V) denotes the space of bounded linear
operators from X to V. We set L(X ) , L(X ,X ) and B(X ) , B(X ,X ). Given an operator
A ∈ B(X ,V), its adjoint A∗ is the operator A∗ : V → X such that for all x ∈ X and u ∈ V,
〈Ax, u〉 = 〈x,A∗u〉. S(X ) denotes the space of self-adjoint bounded linear operators from
X to X , i.e., S(X ) , {A ∈ B(X ) |A = A∗}. Given two operators A, B ∈ S(X ), the
Loewner partial ordering on S(X ) is defined by A � B ⇔ 〈Ax, x〉 ≥ 〈Bx, x〉, ∀x ∈ X . An
operator A is said to be positive semidefinite if A is a self-adjoint bounded linear operator
and A � 0. Let α ∈ [0,+∞[; Pα(X ) denotes the space of positive semidefinite operators
A such that A � αId, i.e., Pα(X ) , {A ∈ S(X ) |A � αId}. Given an operator A ∈ Pα,
its positive square root

√
A is the unique operator

√
A ∈ Pα such that (

√
A)2 = A. For

every A ∈ Pα(X ), we define a semi-scalar product and a semi-norm (a scalar product
and a norm if α > 0) by 〈·, ·〉A , 〈A·, ·〉 and by ‖·‖A ,

√
〈A·, ·〉, respectively. The domain

of a set-valued operator A : X → 2X is defined by dom A , {x ∈ X |Ax 6= ∅}, its graph
by gra A , {(x, u) ∈ X × X |u ∈ Ax}, the set of zeros by zer A , {x ∈ X | 0 ∈ Ax},
the range of A by ran A , {u ∈ X | (∃x ∈ X ) u ∈ Ax}, and the inverse of A by
A−1 : X → 2X : u → {x ∈ X |u ∈ Ax}. We use the notation {xk} as a shorthand for
representing the sequence {xk}+∞k=1. We say that a sequence {xk} in H converges in the
norm (or strongly converges) to a point x in H if ‖xk−x‖ → 0 and say that it converges
weakly if, for every u ∈ H, 〈xk, u〉 → 〈x, u〉. We denote weak convergence by w−→.3 The
space of absolutely-summable sequences in R, i.e., the space of sequences {xk} in R such

2The reader may wonder why we do not exclusively consider finite-dimensional spaces, since we are
dealing with digital images, which are already discretizations of a continuous space. We choose to
consider infinite-dimensional spaces mainly for generalization purposes, since it may be useful to consider
these spaces if one wishes to keep the analysis of the algorithms that solve optimization problems
independent from the analysis of the discretization of the problem [12].
3Strong convergence implies weak convergence to the same limit. In finite-dimensional spaces, weak
convergence implies strong convergence.
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that
∑

k |xk| < ∞, is denoted by `1(N); the set of summable sequences in [0,+∞[ is
denoted by `1+(N). We denote by

⊕
j∈{1,...,N} Vj the Hilbert direct sum [11, Example 2.1]

of the Hilbert spaces Vj , j ∈ {1, . . . , N}. Given two set-valued operators A : X → 2V

and B : X → 2V , their parallel sum is A�B ,
(
A−1 +B−1

)−1.
Additionally, we denote by R the set of real numbers, by Rn the set of real column

vectors of length n, and by Rm×n the set of real matrices with m rows and n columns.
Bold lowercase letters denote vectors and bold uppercase letters denote matrices. In ∈
Rn×n denotes the identity matrix of size n × n. 1n denotes a vector of ones of size n,
and 0 denotes a zero vector or matrix of appropriate size. aT denotes the transpose of a
vector a and AT denotes the transpose of a matrix A. [a]i denotes the i-th element of a
vector a, [A]:j denotes the j-th column of a matrix A, and [A]ij denotes the element in
the i-th row and j-th column of a matrix A. ‖A‖F ,

√
Tr(AA∗) denotes the Frobenius

norm of a matrix A.
Finally, let f : X →]−∞,+∞] be a function. Its domain is denoted by dom f , {x ∈
X | f(x) < +∞} and its epigraph by epi f , {(x, s) ∈ X × R | f(x) ≤ s}. The function
f is lower semi-continuous if epi f is closed in X × R, and convex if epi f is convex in
X × R. We use Γ0(X ) to denote the class of all lower semi-continuous convex functions
f from X to ]−∞,+∞] that are proper, i.e., such that dom f 6= ∅. Given two functions
f ∈ Γ0(X ) and g ∈ Γ0(X ), their infimal convolution is f ?inf g : X → [−∞,+∞] : x →
inf
u∈X

(f(u) + g(x− u)).

1.1.2. Outline

The structure of this chapter is as follows. Section 1.2 discusses some general character-
istics of inverse problems, taking image deconvolution as an example application. Sec-
tion 1.3 discusses how to formulate imaging problems as regularization ones. Section 1.5
concludes with some comments and extra references.

1.2. Image deblurring as an inverse problem

In this section, we discuss some characteristics of inverse problems. We use the problem
of image deblurring as the basis for this analysis.
A grayscale digital image can be represented mathematically as anm×n matrix, where

each element corresponds to a pixel (each pixel is assigned an intensity value). Color or
spectral images, which are sets of grayscale images, can be represented as 3-D arrays.
However, in this chapter, we consider only grayscale images for ease of exposition. The
acquisition process that results in blurred images is usually modeled by a 2-D convolution
between a sharp image and the impulse response of a filter. Fig. 1.1 illustrates the
situation with an example using the well-known cameraman image. The impulse response
of the filter is also known as its point-spread function (PSF). This filter is used to model
different kinds of image degradation, such as blurs due to motion, atmospheric turbulence,
or wrong focus. Additionally, observation noise is also present. It is often assumed to be
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(a) (b) (c)

Figure 1.1.: Image deblurring: sharp image (a), filter (b), and blurred image (c), which
is the result of the convolution between the sharp image and the filter.

white, Gaussian, and independent from the image. This noise models phenomena with
different sources, such as electronic or quantization noise.4

In the literature on image processing, it is frequent to model the acquisition process
using matrix-vector notation, i.e., the observed (blurred) image, the sharp image and
the observation noise are represented not as matrices but as vectors, by ordering these
matrices lexicographically. The acquisition process is then modeled as

y = Hx + n, (1.1)

where y ∈ Rmn, x ∈ Rmn and n ∈ Rmn represent the blurred image, the sharp image,
and the noise, respectively, and H ∈ Rmn×mn is a block-Toeplitz-Toeplitz-block (BTTB)
matrix such that Hx represents the convolution of x with the PSF of the filter. An
equivalent formulation would be to represent this convolution as Xh, where X is a BTTB
matrix and h is a vector representing the filter, but the representation of Eq. (1.1) is more
convenient for most applications. Model (1.1) assumes that the blurring effect is uniform
throughout the image, i.e., that the degradation is shift-invariant. If this assumption is
not verified, the image can be considered to be segmented into different regions, which
are usually called patches by the image-processing community. In this case, each patch
has an associated filter, and model (1.1) is still valid locally, i.e., by considering each
patch individually.
The choice of Eq (1.1) to model image deblurring addresses the first point of the

framework discussed in Section 1.1. The vector y corresponds to the observations, and
H and x correspond to the original data. The direct problem is to find y given H
and x, whereas the inverse problem is the reverse. Given that blurring is modeled as
a convolution, the inverse problem is a deconvolution problem, which is usually divided
into two categories: blind and non-blind. In the blind problem, the PSF is unknown,
while in the non-blind problem, it is assumed to be known.

4For a certain class of images, it might be more convenient to model the noise by a Poisson process.
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Problems such as these are usually ill posed, in the sense that they do not satisfy any of
the three conditions suggested by Hadamard for a problem to be considered well posed,
namely: (a) stability, (b) existence, and (c) uniqueness of the solution [13, Ch. 1]. In
fact, in regard to point (a), above, the process of computing the inverse solution is often
unstable. This means that a small perturbation in some observations might cause large
changes in the estimated parameters. In non-blind deconvolution, this statement can
be made more precise by studying the singular-value decomposition (SVD) of matrix H,
which we do next. In general, the stability condition is the one being violated most often,
but the others can also be. On one hand, in regard to point (b), the solution might not
even exist, which is true if, e.g., the model does not fit the data exactly. On the other
hand, in regard to point (c), even if a solution exists, its uniqueness is not guaranteed.
An observation y could have been generated by an infinite number of pairs of sharp
images and filters. For example, in blind deconvolution, all the different kH and x

k , for
k ∈ ]0,+∞[, lead to the same observation y.
For now and until the end of this chapter, unless otherwise noted, we consider that we

are dealing with the non-blind deconvolution problem—either H is known or we have a
good estimate of it. A very useful tool to analyze linear systems is the SVD. Matrix H
can be factorized into

H = UΣV∗, (1.2)

where U,V ∈ Rmn×mn are orthogonal matrices containing the left and right singular
vectors, respectively, and Σ ∈ Rmn×mn is a diagonal matrix containing the singular
values σ1, · · · , σmn ≥ 0 of H in non-increasing order. Some of these values might be
zero, so assume that there are r positive ones (r corresponds to the rank of the matrix).
Denote by Σ̂, Û and V̂, respectively, the truncated matrices obtained by discarding the
rows and columns with the zero singular values in Σ and the corresponding columns of
U and V. Naturally, H = ÛΣ̂V̂∗. This can also be written as H =

∑r
i=1 σiuiv

T
i , where

ui are the columns of Û and vi are the columns of V̂.
Typically, the smallest singular values of H are very close to zero. The singular vectors

associated with them normally represent high-frequency information [14, Ch. 1]. The
condition number of H, given by

cond(H) ,
σ1

σmn
, (1.3)

is, therefore, very large, or even infinite if H is not full-rank, i.e., if r 6= mn. Problems
involving matrices with large condition numbers are called ill conditioned.
Imagine that we want to estimate x given y and H. Ignoring for now the existence of

noise, a direct approach is to solve the linear system y = Hx for x, which could be done
by inverting H, if possible. Since this matrix is not necessarily invertible, the SVD can
be used to compute its Moore-Penrose pseudo-inverse [13, Ch. 3]. The solution of the
linear system is then given by

x̂SVD , H†y , V̂Σ̂−1Û∗y =

r∑
i=1

〈ui,y〉
σi

vi, (1.4)
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where ·† denotes the pseudo-inverse. However, according to model (1.1), the observa-
tion y is contaminated by noise. Typically, the image x is mainly associated with the
low-frequency components of y and the noise dominates the high-frequency ones. The
solution that we are actually able to find using this approach is H†y = H†Hx + H†n,
where

H†n =

r∑
i=1

〈ui,n〉
σi

vi. (1.5)

Eqs. (1.4) and (1.5) involve the reciprocals of the singular values σi. Since the ones
associated with high-frequency information are very small, their reciprocals are very
large. This implies that they have a disproportionate influence on the solution given by
this approach and H†y normally yields an image that is extremely noisy.
Under certain assumptions on H, it can be shown that the approach that we have been

describing solves a least-squares problem [13, Ch. 3], i.e., x̂SVD ∈ arg minx∈Rmn{‖y −
Hx‖22}. This implicitly addresses the second point of the framework discussed in Sec-
tion 1.1, i.e., the criterion used to evaluate the fitness of the model: we are measuring
the `2 norm of the residual. Other criteria could have been chosen. For example, if the
noise was impulsive instead of Gaussian, it would have been more suitable to solve the
problem arg minx∈Rmn{‖y − Hx‖1}, i.e., to use the `1 norm instead of the Euclidean
norm as criterion.5

1.3. Regularization

Due to the issues discussed above regarding the effect of noise, it becomes clear that the
pseudo-inverse-based approach cannot be used to solve deconvolution problems. There
are a number of alternatives. One of them uses a technique called truncated SVD to
produce an approximation H̃ of H. This approximation is used in place of the original
H in Eq. (1.4) to find a solution to the linear system y = Hx. H̃ is constructed by
keeping only the highest singular values of the matrix H, truncating the singular vectors
associated with the remaining singular values, i.e., H̃ =

∑s
i=1 σiuiv

T
i for some choice of

s < r.6

An alternative to stabilize the inversion process that merely attenuates the effect asso-
ciated with the lowest singular values of H is a technique called Tikhonov regularization,
which consists in solving the problem

minimize
x∈Rmn

‖y −Hx‖22 + µ‖x‖22, (1.6)

where µ > 0 is a regularization parameter that can be adjusted by the user. It can be

5In images with noise modeled by a Poisson process, other criteria can be used (see, e.g., Figueiredo
and Bioucas-Dias [15]).
6This technique finds a low-rank approximation of a given matrix, in the sense that it finds a matrix
of rank s that minimizes the Frobenius norm between it and the original matrix.
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shown that the solution to Problem (1.6) is given by

x̂Tikhonov ,
mn∑
i=1

αi
〈ui,y〉
σi

vi, αi ,
σ2
i

σ2
i + µ

. (1.7)

The terms αi are called filter factors. As before, the observation y is contaminated by
noise, but its effect on x̂Tikhonov is attenuated when compared to the solution given in
Eq. (1.4). This is because, for σi �

√
µ, the filter factors are very small (essentially

nullifying the components associated with small singular values), while for σi �
√
µ,

they are close to unity.
It is not possible to know beforehand which are the components of y that should be

attenuated. There are principled approaches to determine µ, but sometimes, in practice,
Problem (1.6) is solved for different values of µ and the corresponding solutions x̂Tikhonov
are inspected visually. A very large value of µ leads to a very “smoothed” image, due to
the absence of high-frequency information, which is associated with noise but also with
edges and other sharp features of the image. In contrast, a very low value of µ leads to a
very noisy image. Consequently, the choice of the parameter µ should be made with care,
in order to retain the majority of the high-frequency information but without amplifying
the noise excessively.
In general, regularization—not necessarily Tikhonov’s—implicitly adds extra constraints

to our desired solution. For example, the optimization problem

minimize
x∈Rmn

‖y −Hx‖22

subject to ‖x‖22 ≤ c,
(1.8)

with c > 0, can be shown to correspond to Problem (1.6) for some µ.7 In this sense,
regularization can be seen as a way of constraining the solution to obey certain conditions.
In other words, regularization can be used to add suitable prior information about the
solution. Suppose that, as before, we know that our observations follow model (1.1),
but now we also know that the desired solution has low energy. Apart from minimizing
‖y − Hx‖22, it would make sense to also minimize the Euclidean norm of x. This is
exactly what is done in Tikhononv regularization. In conclusion, the choice of regularizer
corresponds to the third point of the inverse problems framework, i.e., the choice of which
additional information about the desired solution to use.
Besides the Euclidean norm, other regularizers acting on x can be used. The choice

of regularizer should reflect prior knowledge about the desired solution. Considering a
generic regularizer φ ∈ Γ0(Rmn), Problem (1.6) can be generalized as

minimize
x∈Rmn

‖y −Hx‖22 + µφ(x). (1.9)

Problems such as these are known as regularization problems, and the first term is known

7See, e.g., Lorenz and Worliczek [16] for a discussion on how these two problems relate to each other.
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as the data-fitting term.8 In what follows, we discuss some examples of regularizers and
the assumptions associated with them in the context of image deblurring.
The regularizers in Problem (1.9) should reflect a priori knowledge about the type

of solutions that we seek. For example, as seen before, the term µ‖x‖22 can be used to
reflect the belief that the signal has low energy. A feature of some of the signals that
occur in many signal-processing problems is sparsity. If a signal is represented by a
vector, it is said to be sparse if most of its coefficients are zero. One way to use this fact
when formulating a problem such as Problem (1.9) is to use the `0 pseudo-norm of x as a
regularizer, which counts the number of non-zero entries of x. The resulting optimization
problem is

minimize
x∈Rmn

‖y −Hx‖22 + µ‖x‖0. (1.10)

The use of the `0 pseudo-norm leads to a problem that is NP-hard [17]. Under certain
assumptions on H, it has been shown that the solution to this problem coincides, with
high probability, with the solution of a problem that is much easier to solve9 (see, e.g.,
Candès [19] and references within). This problem is

minimize
x∈Rmn

‖y −Hx‖22 + µ‖x‖1. (1.11)

Unlike the `0 pseudo-norm, the `1 norm is convex, a fact that can be taken advantage of
when solving optimization problems (these problems are discussed in Section 2.1).
In imaging problems, not all images are sparse, but the majority of them are still highly

structured. Natural images, for example, are “piecewise smooth”, i.e., they can be broken
into distinct regions where the intensities of the pixels are almost constant. This means
that, in domains such as the derivative and wavelet ones, the signal is approximately
sparse, in the sense that the majority of the entries of the vector representing the signal
are not zero, but small. An optimization problem that reflects the use of this a priori
knowledge is

minimize
x∈Rmn

‖y −Hx‖22 + µ‖Dx‖1, (1.12)

8Another way to look at the discussed minimization problems is through a Bayesian framework. In fact,
image deconvolution can be expressed as a solution to a maximum-a-posteriori (MAP) problem. Under
a Bayesian framework, all parameters are viewed as unknown stochastic variables, which have associated
probability distributions reflecting prior beliefs. These distributions depend on hyperparameters, which
we denote here by Ω and assume to be known. Given observations y and H, and parameter x, we can
write, using Bayes’ law,

p(x|H,y; Ω) ∝ p(y|x,H; Ω)p(x; Ω),

where p(x|H,y; Ω) is the posterior probability and p(x|Ω) is the prior on x. By making

p(y|x,H; Ω) ∝ e−‖y−Hx‖22

and
p(x; Ω) ∝ e−µφ(x),

it is clear that maximizing p(x|H,y; Ω) to find the most probable x is equivalent to solving Prob-
lem (1.9).
9Loosely speaking, the rows of H are assumed to be incoherent (see, e.g., Candès and Plan [18] for a
precise definition of this term). This assumption is not valid for typical convolution operators, but it
may still be useful in practice to solve Problem (1.11) instead of Problem (1.10).
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1.3. Regularization

where D ∈ Rk×mn is a linear operator with respect to which x has an approximately
sparse representation. Other examples of linear operators that could be of interest are
matrices whose rows are the entries of dictionaries learned from the data itself [20, 21],
or operators with respect to which x has a redundant representation [22].
Another commonly used regularizer that encodes the fact that images are “piecewise

smooth” is total variation (TV) [23]. Two popular formulations of this regularizer are
the often called anisotropic TV and isotropic TV. They are given by

φTV (x) ,
mn∑
i=1

∥∥∥∥[[Dhx]i
[Dvx]i

]∥∥∥∥
p

, (1.13)

where Dh and Dv are such that the products by these matrices compute, respectively,
the horizontal and vertical first-order differences of a discrete image. If p = 1, we recover
the anisotropic TV case, whereas if p = 2, we recover the isotropic one. Note that
φTV (x) ∈ Γ0(Rmn).
Apart from sparsity, it can also be useful to impose some other constraints on our

desired solution, such as requiring it to be nonnegative (which is the case of any image) or
its domain to be bounded. These constraints can be added to the minimization problem
as proper constraints or through the use of the indicator function of a set C ∈ Rmn,
which is defined as

δC(x) ,

{
0 if x ∈ C,
+∞ otherwise.

(1.14)

When C is convex, closed and non-empty, δC(x) ∈ Γ0(Rmn). An example of its use as a
regularizer is in the problem

minimize
x∈Rmn

‖y −Hx‖22 + µ‖x‖1 + δ[0,1]mn(x), (1.15)

which imposes that the intensity of each pixel be in [0, 1]. Unlike the solution to Prob-
lem (1.6), which has a closed form, Problems (1.12) and (1.15) are solved through iterative
algorithms. These algorithms are discussed in Chapter 2.
Blind deconvolution problems (i.e., problems where the PSF is unknown) can also be

tackled as optimization problems. There is one extra variable to estimate (the filter’s
PSF), and it can be useful to impose certain conditions on it (e.g., low energy). We
consider a regularizer on the image, φ1 ∈ Γ0(Rmn), as well as one on the filter, φ2 ∈
Γ0(Rmn),

minimize
x∈Rmn,h∈Rmn

‖y −Hx‖22 + µ1φ1(x) + µ2φ2(h). (1.16)

This problem is much harder to solve than non-blind deconvolution for two reasons: (a)
we need to estimate both x and h, and (b) the data-fitting term is not convex anymore.
An approach that is used in practice is to alternately solve for x (fixing h) and then for
h (fixing x), the first of these steps effectively solving a non-blind deconvolution problem
of the type of Problem (1.9).
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1. An approach to digital imaging inverse problems

1.4. Remote-sensing hyperspectral imaging

In this section, we give a brief overview on remote-sensing hyperspectral imaging, and, in
particular, on the spectral-unmixing problem. This problem is not analyzed in subsequent
chapters, but algorithms that address it are used as building blocks of some of the
algorithms discussed in Parts II and III, so we briefly discuss them here.
Hyperspectral imaging (often called imaging spectroscopy) is an extension of color

imaging. The latter is concerned with images that only have three channels—these cor-
respond to the blue, green and red wavelengths of visible light—whereas the former is
concerned with images with many more channels. Each channel (which is also called
spectral band) captures a different frequency range along the EM spectrum. Hyperspec-
tral images find applications in surveillance, defense, agriculture, mineralogy, geology,
astronomy, environmental science, and the food and pharmaceutical industries. In this
work, we consider the images used in the remote-sensing field. These images cover the
visible, near-infrared and short-wavelength infrared spectral ranges, i.e., they cover the
wavelength range from 400 nm to 2500 nm.
In Earth remote-sensing imaging, images representing the reflectance of a given scene

are routinely acquired from air- or space-borne sensors. These images are typically
panchromatic (i.e., single-channel) and/or multispectral images, but, increasingly, one
can also find sensors acquiring hyperspectral images. An example of such a sensor is the
Hyperion Imaging Spectrometer [on board the Earth Observing-1 Mission (EO-1) satel-
lite], which captures images with circa 200 channels, each corresponding to a band of the
EM spectrum covering a range of approximately 10 nm, with a spatial resolution of 30 m.
An example of a more commonly found satellite is IKONOS, whose instruments acquire
multispectral images (MSIs) with four channels (blue, green, red, and near-infrared) and
with a spatial resolution of 3.2 m; they also acquire panchromatic images (PANs) with a
spatial resolution of 0.82 m. PANs usually cover the visible and the near-infrared spectral
ranges, but do not cover higher wavelength ranges. In contrast, both hyperspectral im-
ages (HSIs) and MSIs usually cover a larger spectral range. Typically, these images also
have a higher spectral resolution than PANs, but a lower spatial resolution. In particular,
HSIs have a still higher spectral resolution than MSIs, but typically have a lower spatial
resolution than either MSIs or PANs. The differences in resolution are due to the design
of the instruments that acquire these images. In general, it is not easy to build sensors
that produce images with both a high spectral and a high spatial resolution.10

HSIs, due to their large number of channels, contain more spectral information than
MSIs, a fact that makes these images very useful in applications such as object detection,
and material classification and identification. While, in the past, hyperspectral sensors
were not common, they are becoming more and more popular. For example, a number
of missions that have the goal of launching satellites with hyperspectral sensors are cur-
rently under development worldwide: the German Environmental Mapping and Analysis
Program (EnMAP) [24] is preparing the launch of the Polar Satellite Launch Vehicle,

10The definition of what constitutes a multispectral or hypersepctral image is not exact: for example,
the EO-1 satellite captures HSIs and MSIs with the same spatial resolution.
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1.4. Remote-sensing hyperspectral imaging

which includes a hyperspectral sensor, in 2018;11 the Italian mission PRecursore Iper-
Spettrale della Missione Applicativa (PRISMA) [25] is planning the launch of a satellite
containing both hyperspectral and panchromatic capturing devices in 2018;12 the Indian
satellite GEO Imaging Satellite (GISAT) 1 and the ones from mission Cartosat-3 are due
to launch in 2017-2020—the three will carry hyperspectral sensors and the latter will
also carry panchromatic and multispectral sensors—;13 NASA’s Hyperspectral InfraRed
Imager (HyspIRI) [26] will include a hyperspectral imager and a thermal infrared scan-
ner;14 and the Japanese Hyperspectral Imager SUIte (HISUI) will include hyperspectral
and multispectral sensors [27].15

The relatively low spatial resolution of HSIs causes several problems, and it is of interest
to produce images with higher resolutions [28]. One way to accomplish this is by means
of superresolution algorithms. They can be seen as a processing step to be performed in
the first stage of the pipeline of some applications, such as object detection or spectral
unmixing.
Multispectral and hyperspectral images can be thought of as data cubes (3-D arrays).

Two of the dimensions of the cube are associated with physical space, whereas the other
one is associated with wavelength. Another representation that is perhaps more com-
monly found in the literature is the one that considers HSIs and MSIs to be matri-
ces. Each row corresponds to the lexicographical ordering of the image associated with
one channel. Using this notation, HSIs can be represented by a matrix Yh ∈ RLh×nh ,
with Lh channels and spatial dimension nh, and MSIs can be represented by a matrix
Ym ∈ RLm×nm , with Lm channels and spatial dimension nm. Typically, Lm < Lh and
nm > nh.

1.4.1. Spectral unmixing

A problem caused by the relatively low resolution of hyperspectral images, among other
reasons, is spectral mixing. Consider, for example, a hyperspectral sensor aboard a
satellite acquiring images above a forest. If one wishes to identify the species comprising
this forest, one may look at the reflectance intensities along the EM of each pixel and
compare them to a database of spectral signatures (i.e., a database of reflectance profiles
as a function of wavelength) of trees and other materials. Each material (which in this
context is usually called endmember) has its own spectral signature. In general, a pixel
of a HSI does not correspond to just a single material, but to a region with several
of them. Consequently, the reflectance profile of a single pixel will correspond to a
mixture of endmember spectral signatures. In order to disentangle this mixture, spectral

11See http://www.enmap.org/ for details.
12See http://www.asi.it/en/flash/observing-earth/prisma, http://space.skyrocket.de/doc_
sdat/prisma_asi.htm, and https://directory.eoportal.org/web/eoportal/satellite-missions/
p/prisma-hyperspectral for details.

13Seehttp://space.skyrocket.de/doc_sdat/gisat-1.htm and http://space.skyrocket.de/doc_
sdat/cartosat-3.htm for details.

14See https://hyspiri.jpl.nasa.gov/ for details.
15See http://www.jspacesystems.or.jp/en_project_hisui/ for details.
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unmixing techniques can be used. They produce a set of spectral profiles, one for each
endmember, and a corresponding set of abundances, or percentages of occupation, for
each endmember, in each pixel. Spectral unmixing is an ill-posed problem.
The spectral mixture can be considered to be linear,16 in the sense that the reflectance

profile of a given pixel corresponds to a weighted sum of the spectral signatures of the
endmembers present in the region associated with this pixel. Linear spectral mixing can
be modeled pixel-wise as

[Yh]:j = Uaj + nj , j = {1, · · · , nh}, (1.17)

where [Yh]:j is a vector containing in its elements the reflectance profile of pixel j of
a given hyperspectral image Yh, U ∈ RLh×P is a matrix whose columns contain the
spectral signature of the various endmembers, P is the number of endmembers present
in the scene, aj ∈ RP is a vector containing in its elements the abundance fractions of
the endmembers present in pixel j, and nj ∈ RLh is a vector representing noise and/or
modeling errors. The matrix U is assumed to be known if it corresponds to a database
(or dictionary) of spectral signatures acquired in laboratory of different materials, or is
estimated from the data itself.
The abundances obey two conditions: they are nonnegative and they sum to one, i.e.,{

[aj ]i ≥ 0, i = {1, · · · , P},
1TPaj = 1.

(1.18)

As a consequence, the vectors of abundances aj , j = {1, · · · , nh}, are contained in the
simplex of dimension (P −1) if the columns of U are affinely independent.17 Each vertex
of the simplex corresponds to the spectral signature of one endmember. This fact has
been taken advantage of in the design of many of the unmixing algorithms found in the
literature.
Unmixing algorithms can be classified as being pure-pixel -based or not. Pure-pixel-

based algorithms are built under the assumption that the scene represented in the hy-
perspectral image has regions where only one material is observed. Additionally, it is
assumed that such regions exist for every material. These regions should be represented
by one (or more) pixels in the image, which are called pure pixels. In other words, each
vertex of the (P − 1)-simplex is present in the columns of the matrix Yh. Although
such assumptions may be too strong for many real-world images, pure-pixel-based algo-
rithms tend to be computationally fast and conceptually intuitive. An example of a pure
pixel-based algorithm is vertex component analysis (VCA) [31].
Other algorithms that are used to spectrally unmix HSIs do not rely on the existence of

pure pixels. Some of them exploit the fact that each pixel contains only a small number
of materials, i.e., that aj is sparse, j = {1, · · · , nh}. They are based on the solution to an

16This is true only under certain assumptions [29], but linearity is an acceptable assumption for many
practical scenarios. One could also consider nonlinear models [30].

17I.e., if [U]:1 − [U]:0, [U]:2 − [U]:0, · · · , [U]:P − [U]:0 are linearly independent.
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optimization problem where sparsity is imposed on aj via a sparsity-inducing regularizer.
A possible formulation, similar to the one of Problem (1.11), is given, pixel-wise, by

minimize
aj∈RP

‖[Yh]:j −Uaj‖22 + µ‖aj‖1

subject to [aj ]i ≥ 0, i = {1, · · · , P}.
(1.19)

In these algorithms, the condition 1TPaj = 1 is usually not enforced (see Bioucas-Dias et
al. [29, Section VI] for an explanation).

1.5. Comments and references

The characterization of inverse problems given here was inspired by Hansen et al. [14],
Press et al. [32], and Aster et al. [13].
For more details on the use of sparsity in imaging problems, see Bach [33]. For more

details on algorithmic approaches to the problem of image deblurring, see Campisi and
Egiazarian [34] and Rajagopalan and Chellappa [35]. For more details on the problem of
image superresolution, see Milanfar [36].
For an introduction to the topic of remote-sensing imaging, see Shaw and Burke [28],

and Bioucas-Dias et al. [37]. For more details on spectral unmixing, see Dobigeon et
al. [30] and Bioucas-Dias et al. [29].
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2. Algorithms used to solve imaging
problems

This chapter addresses the last point of the framework discussed in Section 1.1, i.e., the
algorithms used to solve imaging optimization problems. These problems are considered
to be hard to solve, and normally it is not possible to use a general-purpose optimization
algorithm to solve them due, essentially, to two reasons. First, these algorithms are
often very slow when dealing with large-scale problems, as normally happens in image
processing. Second, in order to be able to take advantage of the aforementioned sparsity of
natural images when represented in appropriate domains, imaging optimization problems
frequently involve regularizers that are non-differentiable. For these two reasons, it is of
great interest to develop specific algorithms to solve imaging problems. In this chapter,
we present some of these algorithms. We start by introducing some notions used in the
study of convex optimization problems. We then describe some basic algorithms that are
used as building blocks for more complex ones, which we also present next. Finally, we
discuss these algorithms in the context of monotone-operator and fixed-point theory.
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2.1. Introduction

In this work, all the optimization problems under consideration are convex. A distinc-
tive feature of this class of problems is that, if a local minimum exists, it must be a
global minimum. For this reason, convex problems are usually much easier to solve than
non-convex ones. We assume that all problems under consideration have at least one
minimizer.
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The algorithms used to solve imaging problems are usually iterative, since it is im-
practical or even impossible to find a closed-form solution to these problems. Different
criteria are used to decide when to stop the algorithms, e.g., if the number of iterations is
larger than a predetermined value or if the `2 norm between the solutions of two consec-
utive iterations is lower than a given threshold. When devising iterative algorithms, it is
usually important to study what are the conditions under which they converge, and the
rate at which they do so. For many algorithms, this study can be done in a systematic
way by formulating them as fixed-point iterations of appropriate operators. This topic
is addressed in Sections 2.3 and 2.5.
We now introduce some basic concepts used in convex analysis. Although all func-

tions under consideration are convex, some of them are not smooth, i.e., they are non-
differentiable (in the sense of Fréchet [11, Definition 2.45]). The notions of subgradient
and subdifferential of a convex function (in the sense of Moreau and Rockafellar [38,
Chapter 23]) are useful when dealing with them. A vector p ∈ Rn is said to be a
subgradient of a function g ∈ Γ0(Rn) at a point x ∈ Rn if

g(y) ≥ g(x) + 〈p,y − x〉, ∀y ∈ Rn. (2.1)

The set of all subgradients of g at x is called the subdifferential of g at x and is denoted by
∂g(x). The set-valued operator ∂g : Rn → 2R

n
: x → ∂g(x) is called the subdifferential

of g. For a differentiable function f ∈ Γ0(Rn), the subdifferential at x is a singleton,
i.e., ∂f(x) = {∇f(x)}. The subdifferential operator is critical to our interests. We recall
Fermat’s rule [11, Theorem 16.2]: x is a minimum of a proper convex function if and
only if 0 ∈ ∂g(x).
We say that an operator A is Lipschitz continuous with constant L > 0 if

‖u− v‖ ≤ L‖x− y‖, ∀ (x, u) ∈ gra A, ∀ (y, v) ∈ gra A. (2.2)

For example, the data-fitting term of the objective function of Problem (1.9), ‖y−Hx‖22,
has a Lipschitz-continuous gradient with constant β = 2‖H‖2. When L = 1 in (2.2), the
operator A is said to be nonexpansive; when L < 1, it is said to be contractive.

2.1.1. Outline

In Chapter 1, we discussed how the objective functions of convex problems in the context
of imaging usually involve data-fitting terms and one or more regularizers. We can
consider these problems as particular cases of the problem

minimize
x∈Rn

f(x) + g(x) +
N∑
j=1

hj(Djx), (2.3)

where f ∈ Γ0(Rn) is differentiable, but g ∈ Γ0(Rn) and the N functions hj ∈ Γ0(Rmj )
may not be, and Dj ∈ Rmj×n, j = {1, . . . , N}.
This chapter lists and briefly discusses a number of algorithms from the literature that

can be used to solve Problem (2.3) and some of its particular cases. The choice of which
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algorithms to list was very practical: either they are explicitly discussed in Parts II
and III, or, if not, they are used as building blocks for the ones that are. We start
by analyzing the simplest ones. More specifically, Section 2.2 discusses algorithms used
to solve problems with smooth objective functions—i.e., problems of the form of Prob-
lem (2.3) when g = 0 and hj = 0, j ∈ {1, . . . , N}—and algorithms used to solve prob-
lems with nonsmooth objective functions—i.e., problems of the form of Problem (2.3)
when f = 0 and hj = 0, j ∈ {1, . . . , N}. Section 2.3 presents the forward–backward
method, which can be used to solve Problem (2.3) when hj = 0, j ∈ {1, . . . , N}, and the
Douglas–Rachford method, which can be used to solve Problem (2.3) when f = 0 and
hj = 0, j ∈ {2, . . . , N}. That section also introduces some notions on Fenchel’s and La-
grange’s duality, and discusses the alternating-direction method of multipliers. Finally,
it presents an algorithm that is able to efficiently solve Problem (2.3) itself. Section 2.4
analyzes a class of algorithms known as semismooth Newton methods, as well as their con-
nection to active-set methods. Section 2.5 gives a brief overview on monotone-operator
theory, and on how it relates to optimization problems and algorithms. Section 2.6
concludes with some comments and extra references.
We consider that the algorithms under discussion in this chapter are being used to solve

digital-imaging problems. Consequently, in Sections 2.2-2.4, we limit their analysis to
finite-dimensional real Hilbert spaces. However, these algorithms could also be presented
in the more general context of infinite-dimensional spaces. Their study from the point of
view of monotone operators is given in infinite-dimensional spaces (Section 2.5).

2.2. Smooth and nonsmooth minimization

In this section, we consider the minimization of two types of convex functions: differen-
tiable and non-differentiable ones.
Imagine that we want to find a minimizer of a function f ∈ Γ0(Rn) that has a Lipschitz-

continuous gradient,

minimize
x∈Rn

f(x). (2.4)

A standard method to find this minimizer is the iterative algorithm known as gradient
descent,

Algorithm 1: Gradient-descent method with a fixed step-size parameter.
1 Choose x0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 xk+1 ← xk − τ∇f(xk);
5 k ← k + 1;
6 end

where k denotes the iteration number and τ > 0 is a fixed step-size parameter. The
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gradient-descent method is a particular case of a line-search method,

xk+1 = xk + λkpk, xk ∈ Rn, (2.5)

where λk > 0 is the step-size parameter and pk is a vector indicating a search direc-
tion. Usually, pk is required to be a descent direction, i.e., 〈pk,∇f(xk)〉 < 0, since this
property guarantees that f is reduced along this direction [39, Chapter 2]. By making
pk = −∇f(xk), we recover the gradient-descent method. This algorithm is a first-order
method, since only the first derivative of f is assumed to be known.
Although many problems in imaging are typically large-scale, the gradient-descent

method and, in particular, its extensions, can be used to efficiently tackle them. The
extensions of this method use a “divide-and-conquer” strategy by splitting the initial
problem into a series of simpler subproblems (see Section 2.3 for more details). Each
iteration of these methods is usually simple to compute. When such methods are run
on a modern computer, they are able to find a medium-to-low-accuracy solution in a
reasonable amount of time for many problems of interest. The solution is generally good
enough for most practical purposes, since the human eye is relatively insensitive to small
differences in the intensity values of an image.
The convergence rate of the gradient-descent method can often be improved through

the use of relaxed and/or inertial steps, or with the use of second-order information if
f is twice-differentiable.1 We introduce relaxed steps and inertial steps in Section 2.3,
and here we briefly discuss second-order line-search methods. We generalize them to
variable-metric methods in Section 2.3 as well.
In second-order line-search methods, the search direction is given by pk = −[Bk]−1∇f(xk),

where Bk ∈ Rn×n is an invertible matrix that obeys certain conditions, such as be-
ing positive definite (in order for pk to be guaranteed to be a descent direction). If
Bk = ∇2f(xk), we recover the classical Newton method, which uses exact knowledge
of the Hessian ∇2f of the smooth function. The Hessian may not always be positive
definite, and in that case, Bk could be modified by, e.g., adding a multiple of the identity
such that the resulting matrix is sufficiently positive definite, or truncating/replacing its
nonpositive eigenvalues [39, Chapter 3]. Furthermore, computing the Hessian may not be
convenient, and, in that case, an approximation can be used, Bk ≈ ∇2f(xk). Methods
that use approximations are sometimes called quasi-Newton. Under certain assumptions,
the local convergence rate of second-order line-search methods is superlinear or even
quadratic, whereas the convergence rate of the gradient-descent method is linear.2

1In this work, the classification of the convergence rates of algorithms are as described in Nesterov [40,
Section 1.2.4] and Nemirovksi [41, Section 1.3.3]. There, they are classified as sublinear, linear, super-
linear, or quadratic. In theory, an algorithm with a quadratic convergence rate is faster than one with
a superlinear rate, which, in turn, is faster than one with a linear rate, etc. In practice, this only holds
if the computational complexity per iteration of the algorithms is comparable. It is common to study
the convergence rate of second-order line-search methods both locally and globally. By locally, we mean
that we study these methods while assuming that the iterates generated by them are close enough to
the solution, so that the Hessian of the objective function at that point is positive definite. By globally,
we mean that we study these methods when this assumption is not made.
2 Usually, under the assumption that f is strongly convex, i.e., that f − m

2
〈x,x〉 is convex, for some
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2.2. Smooth and nonsmooth minimization

Another line-search method of interest is the well-known conjugate-gradient method,
which is a first-order method. It can be used to minimize a convex quadratic function
fQ : Rn →]−∞,+∞] : x→ 1

2〈x,Ax〉− 〈b,x〉+ c, where A ∈ Rn×n is a positive-definite
matrix, b ∈ Rn and c ∈ R. The method attains the optimum in at most n steps. It is
faster than gradient descent, and does not require any storage of matrices [39, Chapter
5]. It can also be used to solve the linear equation Ax = b, since solving this system
is equivalent to minimizing fQ. Note, however, that the conjugate-gradient is not used
exclusively to find minimizers of quadratic functions. In fact, nonlinear versions of this
method can be used to minimize general nonlinear functions.
Consider now that we want to find the minimizer of a convex nonsmooth function

g ∈ Γ0(Rn), such as the `1 regularizer mentioned in Section 1.3,

minimize
x∈Rn

g(x). (2.6)

The gradient-descent method cannot be used, since g is not differentiable everywhere.
One alternative is to minimize a smooth surrogate of this function. The Moreau envelope
is such a surrogate. It is defined by

τg(x) , inf
u∈Rn

{
g(u) +

1

2τ
‖x− u‖2

}
, (2.7)

where τ > 0. τg is continuously differentiable, even if g is not. Both functions share the
same minimizers [11, Proposition 12.9(iii)], and therefore the problems of minimizing g
and τg are equivalent.3

Before continuing, we introduce the proximal operator of g,

proxτg(x) , arg min
u∈Rn

{
g(u) +

1

2τ
‖x− u‖2

}
, (2.8)

which is simply the point that achieves the infimum of Eq. (2.7) (this point is unique,
since u→ g(u) + 1

2τ ‖x− u‖2 is strictly convex). The proximal operator of g relative to

m > 0. Roughly speaking, for the problems under consideration in this work, first-order methods will
converge sublinearly. The use of relaxed and/or inertial steps may improve the convergence rate, but
it will remain sublinear. If the objective function being minimized is strongly convex, the convergence
rate may be linear. Under the same assumption on the objective function, the use of second-order
information may further improve the local convergence rate to superlinear (if a certain approximation
to the Hessian is used [42]) or to quadratic (if the Hessian itself is used).
3 We give here an intuitive explanation, inspired by signal processing, on why the Moreau envelope is
a smooth surrogate of g, since many parallelisms can be drawn between harmonic and convex analysis.
The Moreau envelope of g is, in fact,

τg(x) = τg(x) ?inf
1

2
‖x‖2.

We note that ‖ ·‖2 is a smooth function and, in a sense, we are smoothing the sharp discontinuities that
might exist in g. For more on the analogy between the Legendre–Fenchel conjugate and the infimal
convolution, and between the Fourier transform and the integral convolution, see, e.g., Komodakis and
Pesquet [43]. The notion of conjugate is introduced in Section 2.3.
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2. Algorithms used to solve imaging problems

the norm ‖ · ‖2U, where U ∈ Rn×n and U � 0, is

proxUτg(x) , arg min
u∈Rn

{
g(u) +

1

2τ
‖x− u‖2U

}
. (2.9)

The Moreau envelope is continuously differentiable, with gradient [11, Proposition
12.29]

∇ [τg(x)] =
1

τ

[
x− proxτg(x)

]
, ∀x ∈ Rn. (2.10)

The latter equation can be rewritten as

proxτg(x) = x− τ∇ [τg(x)] , ∀x ∈ Rn, (2.11)

and, by noting the similarities between Eq. (2.11) and Line 4 of Algorithm 1, one can
devise a scheme similar to Algorithm 1 to solve problems involving nonsmooth functions,
the proximal-point method,

Algorithm 2: Proximal-point method with a fixed step-size parameter.
1 Choose x0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 xk+1 ← proxτg(xk) = arg min

u∈Rn

{
g(u) + 1

2τ ‖x
k − u‖2

}
;

5 k ← k + 1;
6 end

We now list the proximal operators of some functions that are used in Parts II and III.4

When g(x) = ‖x‖1, proxτg(x) can be evaluated component-wise. The proximal operator
for each element reduces to the so-called soft-thresholding operator [45], which is given
by

[proxτ‖·‖1(x)]i = max{|[x]i| − τ, 0} sgn ([x]i) , ∀i ∈ {1, · · · , n}. (2.12)

Let x1 and x2 be vectors in Rn, let x = (x1,x2), and let g(x) =
∑n

i=1 ‖([x1]i, [x2]i)‖2.
The proximal operator of g can be evaluated component-wise. For each i, it reduces to
the so-called vector soft-thresholding operator [46], which is given by

[proxτg(x)]i = max {‖([x1]i, [x2]i)‖2 − τ, 0}
([x1]i, [x2]i)

‖([x1]i, [x2]i)‖2
, ∀i ∈ {1, · · · , n}. (2.13)

We follow the convention that 0/‖0‖2 = 0.
Finally, the proximal operator of the indicator function [cf. Eq. (1.14)] when the set

C ∈ Rn is convex, closed and non-empty is an Euclidean projection onto C, which we
denote by

PC(x) , arg min
u∈C

‖x− u‖22. (2.14)

4See, e.g., Combettes and Pesquet [44] for the proximal operators of more functions.
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2.3. Splitting methods

2.3. Splitting methods

The objective functions of many problems of interest, such as the one of Problem (1.9),
can be formulated as sums of two convex functions: one smooth, f ∈ Γ0(Rn), and another
one that needs not be, g ∈ Γ0(Rn). The resulting problem is

minimize
x∈Rn

f(x) + g(x). (2.15)

Such a problem could be solved by using the proximal-point method, since f + g is
itself a nonsmooth convex function. This would require one to compute prox(f+g), which
is frequently hard to do. Sometimes, it is useful to consider splitting methods, which
are methods that take advantage of the fact that f and g are separate. The forward–
backward method [47, 48, 49, 50] is an example of a splitting method, since its iterations
can be broken into a forward (gradient) step on f and a backward (proximal) step on g,
performed consecutively:

Algorithm 3: Forward-backward algorithm with a fixed step-size parameter.
1 Choose x0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 xk+1 ← proxτg[xk − τ∇f(xk)];
5 k ← k + 1;
6 end

The splitting f + g may not be unique. Different splittings lead to different versions of
the forward–backward method. This method can be seen as a generalization of the two
previous ones: when g = 0, we recover the gradient-descent method, while when f = 0,
we recover the proximal-point method.
In order to prove under which conditions iterative algorithms such as the ones that we

have been discussing solve the corresponding optimization problems, it can be useful to
consider fixed-point methods. The set of fixed points of an operator A : X → X is

Fix A , {x ∈ X |x = Ax}. (2.16)

If A is a Lipschitz-continuous operator, Fix A is closed [11, Proposition 4.14]. If A is
nonexpansive, Fix A is closed and convex [11, Corollary 4.15]. Fixed-point methods try
to find the fixed points of an operator (if they exist) by producing a sequence of points
{xk} that should converge to one of them, given an initial point x0 ∈ X . Some iterative
methods such as the gradient-descent and proximal-point ones are, in fact, fixed-point
methods, in the sense that they are able to find fixed points of certain operators. When
using these algorithms to solve optimization problems, the fixed points correspond to
the solutions of the problem. We now briefly discuss how one can proceed in order
to show that a method such as the forward–backward one converges to a solution of
Problem (2.15).
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2. Algorithms used to solve imaging problems

It can be shown [51] that the forward–backward method produces a sequence of points
that is Fejér monotone with respect to Fix proxτg[· − τ∇f(·)].5 A sequence {xk} is said
to be Fejér monotone with respect to a nonempty closed and convex set S in X if

‖xk+1 − x‖ ≤ ‖xk − x‖, ∀x ∈ S. (2.17)

Such a sequence is bounded. Consequently, it possesses a subsequence that converges
weakly to a point x ∈ X . Such a point is said to be a weak sequential cluster point of
{xk}, and we denote the set of weak sequential cluster points of {xk} byW . Interestingly,
it is also a consequence of Fejér monotonicity that a necessary and sufficient condition for
the sequence {xk} to converge weakly to a point in S is that W ⊂ S [51], [11, Chapters
2 and 5].6

Finally, it can also be shown (see Section 2.5) that x is a solution of Problem (2.15) if
and only if

x = proxτg(x− τ∇f(x)), (2.18)

i.e., if and if x ∈ Fix {proxτg[· − τ∇f(·)]}.
The interpretation of optimization algorithms as fixed-point methods and the condi-

tions under which these methods can be used to find fixed points of an operator are
discussed further in Section 2.5.
In Section 2.2, we discussed the use of second-order information to accelerate the

progression towards a solution of the iterates produced by an algorithm. One may equally
consider the use of other techniques. Relaxed steps [52, 53, 54] and inertial steps [55,
56, 57] are two possibilities. Both types of steps are characterized by the computation
of a convex combination of two consecutive iterates. The weights of this combination
can vary from iteration to iteration. Different weight combinations lead to different
algorithms (with corresponding different convergence rates). We demonstrate the use of
both techniques in the forward–backward method (cf. Algorithm 3).
The use of relaxed steps in the forward–backward method gives rise to the relaxed

forward–backward method, which is
5This is a consequence of the fact that operator proxτg[·−τ∇f(·)] is averaged, a notion that is introduced
in Section 2.5.
6It is sometimes useful to consider the notions of quasi-Fejér monotonicity and of Fejér monotonicity
relative to a variable metric. A sequence is said to be quasi-Fejér monotone with respect to a nonempty
closed and convex set S in X if

‖xk+1 − x‖ ≤ ‖xk − x‖+ εk, ∃
{
εk
}
∈ `1+(N), ∀x ∈ S.

A sequence is said to be Fejér monotone with respect to a nonempty closed and convex set S in X
relative to a sequence

{
V k
}
such that

V k ∈ Pα(X ), α ∈ ]0,+∞[, ∀k ∈ N,
supk ‖V k‖ <∞,(
1 + ηk

)
V k+1 � V k,

{
ηk
}
∈ `1+(N), ∀k ∈ N

if
‖xk+1 − x‖V k+1 ≤ (1 + ηk)‖xk − x‖V k , ∀x ∈ S.
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2.3. Splitting methods

Algorithm 4: Relaxed forward–backward method.
1 Choose x0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0;
5 vk ← xk − τ∇f(xk);
6 xk+1 ← xk + λk(proxτgvk − xk);
7 k ← k + 1;
8 end

The use of inertial steps in the forward–backward method gives rise to the following
algorithm:

Algorithm 5: Forward-backward method with inertial steps.
1 Choose y0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose αk > 0;
5 xk+1 ← proxτg[yk − τ∇f(yk)];
6 yk+1 ← xk+1 + αk

(
xk − xk+1

)
;

7 k ← k + 1;
8 end

Both techniques can be combined [58, 59]. We recover the original forward–backward
method by making λk = 1 for every k in Algorithm 4, or by making αk = 0 for every k
in Algorithm 5. It is unclear which technique is more useful in practice, but Algorithm 5
has been proven to converge at an optimal rate in some sense [56].

It is also of interest to consider problems whose objective functions are given by the
sum of two possibly nonsmooth functions. Consider the problem

minimize
x∈Rn

g(x) + h(x), (2.19)

where g is defined as before and h ∈ Γ0(Rn) is another possibly nonsmooth function.
The possibility of g to be nonsmooth allows the use of nonsmooth data-fitting terms,7

but prevents us from using the forward–backward method. A method that can be used
is the relaxed Douglas–Rachford one, which is given by

7See Footnote 5 of Chapter 1.
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2. Algorithms used to solve imaging problems

Algorithm 6: Relaxed Douglas–Rachford method.
1 Choose x0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0;
5 xk ← proxτhwk;
6 vk ← proxτg(2xk −wk);
7 wk+1 ← wk + 2λk(vk − xk);
8 k ← k + 1;
9 end

The non-relaxed form of this method is obtained by making λk = 1/2 for every k.
Consider yet another problem,

minimize
x∈Rn

g(x) + h(Dx), (2.20)

where g and h are defined as before, and D ∈ Rm×n. Problems such as these are
discussed in Section 1.3 [cf. Problem (1.12)]. The matrix D can cause some difficulties
when directly applying the Douglas–Rachford method to solve this problem, since that
requires the computation of proxh(D·), which may be intractable. For example, if h is the
`1 norm, we lose the ability to compute its proximal operator element-wise.
One way to deal with this issue is to use some results from duality theory, in the sense

of Fenchel, to formulate a problem that is equivalent to Problem (2.20), but that may
be easier to solve. Given an optimization problem—usually termed primal problem—the
Fenchel–Rockafellar duality theorem [11, Chapter 15] states that there is a dual problem
whose minimum provides a lower bound on the minimum of the original problem (up to a
minus sign). For problems of the form of Problem (2.20), if g ∈ Γ0(Rn) and h ∈ Γ0(Rm),
then this bound is tight, under certain conditions.8 In these cases, it is said that strong
duality holds.
Closely related to these ideas is the concept of Legendre–Fenchel conjugate of a function

f , which is defined as

f∗ : Rn → [−∞,+∞] : x→ sup
u∈Rn

〈x,u〉 − f(u). (2.21)

The conjugate is widely used in convex analysis and we recall some of its properties.
Consider that f ∈ Γ0(Rn). Then f∗ ∈ Γ0(Rn) and, by the Fenchel—Moreau theorem [11,
Theorem 13.32], the biconjugate of f (the conjugate of the conjugate) is equal to f , i.e.,
f∗∗ = f . Recalling the definition of the subdifferential [cf. Eq. (2.1], another property is
that [11, Proposition 16.9]

u ∈ ∂f(x)⇔ x ∈ ∂f∗(u), ∀x,u ∈ Rn. (2.22)
8See Rockafellar [60, Corollary 31.2.1] and Bauschke and Combettes [11, Theorem 26.2] for some ex-
amples of such conditions. In finite-dimensional spaces, it is sufficient, e.g., to assume that there exists
an x ∈ ri (dom g) such that Dx ∈ ri (dom h), where ri S is the relative interior [11, Definition 6.9] of
a nonempty convex set S ⊂ Rn. This condition is verified in many problems of interest in imaging.
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2.3. Splitting methods

or, in other words, ∂f∗ = (∂f)−1. These definitions and properties can be used to show
that the dual of Problem (2.20) is [11, Definition 15.19]

minimize
v∈Rm

g∗(−D∗v) + h∗(v). (2.23)

Recalling the definition of proximal operator [cf. Eq. (2.8)] as well, the notion of conjugate
is also important in establishing the so-called Moreau’s decomposition,

proxτg(x) + τ proxg∗/τ (x/τ) = x, ∀x ∈ Rn. (2.24)

Applying the Douglas–Rachford method to solve Problem (2.23) requires the compu-
tation of the proximal operator proxg∗(−D∗·), which can be done using Eq. (2.24). This
may be easier than the computation of proxh(D·).
Some algorithms, instead of solving either the primal problem or the dual one, solve

both of them. These algorithms compute a tentative solution to one of the problems and
then use this solution to compute a tentative solution to the other. They are known as
primal–dual methods, and we discuss two examples in what follows.

2.3.1. The alternating-direction method of multipliers and a primal–dual
forward–backward-based method

Since h ∈ Γ0(Rm), from the Fenchel-–Moreau theorem [11, Theorem 13.32], we have that
h = h∗∗. By making use of Definition (2.21), Problem (2.20) can be rewritten as

arg min
x∈Rn

sup
v∈Rm

g(x) + 〈v,Dx〉 − h∗(v), (2.25)

A solution pair of the latter problem, which we denote by (x,v), satisfies the relations [11,
Theorem 26.2], [60, Theorem 31.3]

−D∗v ∈ ∂g(x), Dx ∈ ∂h∗(v). (2.26)

Such a pair is usually known as a Karush-Kuhn-Tucker (KKT) pair.
In recent years, the alternating-direction method of multipliers (ADMM) and some

other related algorithms have been widely used to solve several signal-processing and
machine-learning problems due to the ability of these algorithms to transform complex
optimization problems into a series of simpler subproblems.9 ADMM can be viewed either
as a primal–dual method (since it finds a KKT pair), as an application of the Douglas–
Rachford method (cf. Algorithm 6) to solve Problem (2.23) [65], or as a Lagrangian
method. In fact, another theory of duality that is intimately connected to Fenchel’s
duality is Lagrange’s duality. Consider the equivalent formulation of Problem (2.20),

minimize
x∈Rn

g(x) + h(u)

subject to u = Dx,
(2.27)

9See, e.g., [61, 62, 63, 64] for details, and see http://stanford.edu/~boyd/admm.html for a small list
of applications of ADMM, along with more references.
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where u ∈ Rm. Its augmented Lagrangian is

Lγ(x,u,d) , g(x) + h(u) +
γ

2

∥∥∥u−Dx− d
∥∥∥2
, (2.28)

where γ > 0 is a penalization parameter, and d ∈ Rm is the scaled dual variable (µd is
the dual variable). ADMM is as follows:

Algorithm 7: ADMM (scaled form).
1 Choose u0 ∈ Rm, d0 ∈ Rm;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose γ > 0;
5 xk+1 ← arg min

x
Lγ(x,uk,dk);

6 uk+1 ← arg min
u

Lγ(xk+1,u,dk);

7 dk+1 ← dk − (uk+1 −Dxk+1);
8 k ← k + 1;
9 end

One may also solve problems of the form of Problem (2.3) when f = 0 and g = 0 by
considering the use of ADMM to solve an alternative formulation of Problem (2.27) [64].
ADMM involves some operations with matrix D that might be hard to perform in large-
scale problems if this matrix does not have an inherent exploitable structure. Alterna-
tives to ADMM are, e.g., its linearized version (a particular case of a method known as
proximal ADMM [66]) or methods such as the ones described next.
Consider now convex problems of the form of Problem (2.3) [Problem (1.15) is an

instance of such a problem]. An algorithm that can be used to solve them is based on
the forward–backward method, and is given by

Algorithm 8: Forward-backward-based primal–dual method.
1 Choose x0 ∈ Rn, d0

1 ∈ Rm1 , . . . , d0
N ∈ RmN , τ > 0, σ1 > 0, . . . , σN > 0;

2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0;

5 pk ← proxτg
(
xk − τ∇f

(
xk
)
− τ

∑N
j=1 D∗jd

k
j

)
;

6 xk+1 ← xk + λk
(
pk − xk

)
;

7 for j ← 1, . . . , N do
8 qkj ← proxσjh∗j

(
dkj + σjDj

(
2pk − xk

))
;

9 dk+1
j ← dkj + λk

(
qkj − dkj

)
;

10 end
11 k ← k + 1;
12 end
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For details on the convergence conditions of this method, see Condat [67] and Vũ [68].
We recover the relaxed forward–backward method (cf. Algorithm 4) by making N = 0,
and the relaxed Douglas–Rachford method (cf. Algorithm 6) by making f = 0, N = 1,
D1 = In, τ = 1/σ1, and λk → 2λk, ∀k.
The forward–backward method finds solutions to convex problems at a linear conver-

gence rate under certain assumptions.10 Similarly to the use of second-order information
in the Newton method, we can also use second-order information in the forward–backward
method. As an example, a Newton-type forward–backward method [69, 70] that min-
imizes the convex function f + g is of the form of Algorithm 3 with Line 4 replaced
by

xk+1 ← proxB
k

g

(
xk −

[
Bk
]−1
∇f

(
xk
))

, (2.29)

where Bk � 0 is the Hessian of f or an approximation of it. Such an algorithm only
uses second-order information of function f (recall that f is differentiable everywhere,
unlike g), but finds solutions at a superlinear or even quadratic local convergence rate
(depending on the choice of Bk) [70]. In Section 2.4, we discuss algorithms that use
second-order information of the whole function, f + g. If we make g = 0, we recover a
Newton-type method.
Variable-metric methods are generalizations of these algorithms. In these methods, the

matrix Bk need not to be the Hessian nor an approximation of it. For example, Bk can
be a preconditioning matrix [71, 72, 53]. A variable-metric version of Algorithm 8 is

Algorithm 9: Forward-backward-based variable-metric primal–dual method.
1 Choose x0 ∈ Rn, d0

1 ∈ Rm1 , . . . , d0
N ∈ RmN ;

2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0, Uk � 0;

5 pk ← prox(Uk)−1

g

(
xk −Uk

(
∇f

(
xk
)

+
∑N

j=1 D∗dkj

))
;

6 xk+1 ← xk + λk
(
pk − xk

)
;

7 for j ← 1, . . . , N do
8 Choose Uk

j � 0;

9 qkj ← prox
(Uk

j )−1

h∗j

(
dkj + Uk

jDj

(
2pk − xk

))
;

10 dk+1
j ← dkj + λk

(
qkj − dkj

)
;

11 end
12 k ← k + 1;
13 end

10Namely, that the objective function is strongly convex (see Footnote 2).
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2.4. Semismooth Newton methods

We now discuss one last class of algorithms, known as the class of semismooth Newton
methods. These methods were originally developed with the goal of using a Newton-like
method to minimize nonsmooth functions. In this section, we briefly discuss the use of
semismooth Newton methods to solve Problem (1.11), which, we recall, is

minimize
x∈Rn

‖y −Hx‖22 + µ‖x‖1. (2.30)

For problems such as these, it was shown by Hintermüller [73] that certain semismooth
Newton methods are equivalent to some active-set methods (see below for a definition).
Although active-set methods are normally used to solve linear and quadratic problems,
they can also be used to solve problems involving sparsity-inducing regularizers, such
as the `1 norm. In fact, active-set methods are particularly suited to these problems,
since they are able to take computational advantage of the sparsity of the variable being
minimized. The discussion that follows also holds for data-fitting terms other than ‖y−
Hx‖22, as long as they are differentiable.
We start by discussing active-set methods. The minimizer of Problem (2.30) is assumed

to be sparse. If we know which of its entries are zero, instead of solving Problem (2.30),
we can solve an equivalent problem. Let x̂ ∈ Rn be a solution to Problem (2.30), let Â
denote the set comprising the indices of the entries of x̂ that are zero, and let Î denote
the set comprising the remaining indices. It is clear that the problem

minimize
x∈Rn

‖y −Hx‖22 + µ‖x‖1

subject to [x]i = 0, i ∈ Â
(2.31)

has the same set of solutions as Problem (2.30). However, this new problem has a much
smaller number of variables to minimize, which usually means that it is much faster to
solve.
In practice, we do not know beforehand which entries of x̂ are zero. Active-set methods

address this issue by finding estimates of the sets Â and Î by following some predefined
strategy (see below). We denote these estimates by A1 and I1, respectively. These
methods then produce a solution to Problem (2.31) with Â replaced by A1. We denote
this solution by x1. Since the set A1 is not guaranteed to be the same as Â, a new
estimate A2 is produced in light of the solution x1, and a new solution x2 is produced
based on A2. These operations are then repeated until a certain stopping criterion is
satisfied. The successive estimates of the set Â are called the active sets and are denoted
by Ak. The variables which are not indexed by the active sets are called free variables
and are indexed by the set Ik. The successive solutions to Problem (2.31) can be found
by any optimization algorithm, and, in this sense, active-set methods are meta-methods.
A common strategy is to solve this problem via a proximal-Newton method [74, Section
8.2].
The choice of strategy determining how both sets are estimated yields different algo-

rithms. In what follows, we discuss an example of such a strategy by showing how some
semismooth Newton methods can be seen as active-set methods.

32



2.4. Semismooth Newton methods

As discussed in Section 2.2, the Newton method can be used to minimize a smooth
function f ∈ Γ0(Rn) by iterating xk+1 = xk−λk[∇2f(xk)]−1∇f(xk). It can also be used
to solve smooth nonlinear equations, in the sense that these equations can be written
as the zero of smooth functions. Let u ∈ Rn, and let F : Rn → Rn be a continuously
differentiable operator. The solution to the equation F (u) = 0 via the Newton method is
found by iterating uk+1 = uk− [F ′(uk)]−1F (uk), where F ′ denotes the Fréchet derivative
of F [11, Definition 2.45]. It is clear that if n = 1 and if F is the gradient of a function
f , solving F (u) = 0 is equivalent to minimizing f .
The minimization problems discussed in the previous sections can be written as non-

linear equations. Take Problem (2.30), for example. Its solution should satisfy the
fixed-point equation [cf. Eq. (2.18)]

x = proxµτ‖x‖1 (x− 2τH∗(Hx− y)) . (2.32)

By defining G : Rn → Rn : u → u− proxµτ‖u‖1 (u− 2τH∗(Hu− y)), Eq. (2.32) can be
written as the nonlinear equation

G(x) = 0. (2.33)

This equation is not smooth, since the soft-thresholding operator [cf. Eq. (2.12)] is
not differentiable everywhere. For this reason, the ordinary Newton method cannot be
used to find a solution to Eq. (2.33). However, there are nonsmooth versions of this
method. In fact, semismooth Newton methods can be used to minimize semismooth
functions, which were first defined in finite-dimensional spaces by Mifflin [75]. Examples
of semismooth functions are the Euclidean norm and piecewise-differentiable functions,
such as Eq. (2.12) [76, Chapter 2]. Semismooth functions are not smooth, and, in order
to be able to use the Newton method to find their minimizers, Mifflin used the notion
of generalized gradient introduced by Clarke [77], which, unlike the subdifferential of a
convex function, is defined for functions that are locally Lipschitz continuous and that
may not be convex. Semismooth Newton methods are able to find minimizers at a
superlinear convergence rate (locally and under certain conditions).
These methods were extended by Chen et al. [78] to the problem of finding solutions

of operator equations in Banach spaces. Chen et al. introduced the notion of slant
differentiability of operators. It can be defined as follows [78, Definitions 2.1 and 2.2]: Let
X and V be Banach spaces, and letG : D ⊂ X → V be an operator. G is said to be slantly
differentiable in the open domain U ⊂ D if there exists an operator H : D → L(X ,V)
such that the family of operators {H(x+d)} is uniformly bounded in the operator norm11

for sufficiently small d and

lim
d→0

G(x+ d)−G(x)−H(x+ d)d

‖d‖
= 0 (2.34)

for every x ∈ U . The operator H is said to be a slanting function for G in U and may
not be unique. An operator G is slantly differentiable at x if and only if G is Lipschitz
continuous at x [78, Theorem 2.6].
11See, e.g., [11, Lemma 2.16] for a definition of uniform boundedness.

33



2. Algorithms used to solve imaging problems

Suppose now that we want to solve the equation G(x) = 0 and that G is slantly
differentiable at a solution x̂ ∈ X of this equation. Let C > 0, let H be a slanting
function for G at x̂, and let ‖[H(x)]−1‖ ≤ C in a neighborhood of x̂. Given a linear
operator V ∈ L(X ,V), the algorithm

Algorithm 10: Semismooth Newton method.
1 Choose x0 ∈ X and V such that ‖V (x̂+ d)−H(x̂+ d)‖ → 0 as ‖d‖ → 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 xk+1 ← xk − [V (xk)]−1G(xk);
5 k ← k + 1;
6 end

locally converges at a superlinear rate to x̂ [78, Theorem 3.4].
It can be shown that the operator G of Eq. (2.33) is slantly differentiable [79]. Conse-

quently, we can use Algorithm 10 to find a solution to Eq. (2.33). In fact, Line 4 of that
algorithm can be rewritten12 for every k as

xk+1 ← xk − [V (xk)]−1
(
xk − proxµτ‖·‖1

(
xk − 2τH∗(Hxk − y)

))
. (2.35)

A possible choice [79] for V (xk) that satisfies the conditions enunciated in Line 1 of
Algorithm 10 is given, in matrix notation, by[

τ [H]∗
:Ik

[H]:Ik τ [H]∗
:Ik

[H]:Ak
0 Icard(Ak).

]
, (2.36)

where card(·) denotes the cardinality of a set and

Ak , {i ∈ N : |[xk − 2τH∗(Hxk − y)]i| ≤ τµ},
Ik , {i ∈ N : |[xk − 2τH∗(Hxk − y)]i| > τµ}.

(2.37)

Griesse and Lorenz [79] showed that this algorithm is equivalent to an active-set method
by rewriting the iteration (2.35) as

xk+1 ←

[(
[H]∗

:Ik
[H]:Ik

)−1 [
H∗y + ek±µ

]
Ik

0

]
, (2.38)

where, for every k,
ek± , sgn

[
xk − 2τH∗(Hxk − y)

]
. (2.39)

The dimension of the problem to solve at each iteration k is given by card(Ak). Naturally,
the sparser the solution is estimated to be, the smaller the dimension of this problem
is. This is the reason why these methods are able to achieve faster convergence rates
in practice than others such as ADMM, since they require the solution of a problem
involving the full matrix H∗H.
12Note that Problem (2.30) is set in a finite-dimensional space.
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2.5. Operator theory

Functional analysis and, in particular, the theory of monotone and of nonexpansive
operators (see below for the definitions) can be used to derive and prove a number of
interesting properties of many of the algorithms used to find the solutions of convex
optimization problems [80]. An operator A : X → 2X is said to be monotone if

〈u− v, x− y〉 ≥ 0, ∀ (x, u) ∈ gra A, ∀ (y, v) ∈ gra A. (2.40)

An operator is maximally monotone if there exists no other monotone operator whose
graph properly contains gra A. As an example, if g ∈ Γ0(X ), than ∂g is maximally
monotone [11, Theorem 20.40]. Let β ∈ ]0,+∞[. We say that an operator is strongly
monotone with constant β if A− βId is monotone.
Monotone operators are connected to optimization problems as follows. Take, for

example, Problem (2.15). According to Fermat’s rule, its solutions should satisfy the
inclusion 0 ∈ ∇f(x) + ∂g(x). Consequently, solving Problem (2.15) can be seen as a
particular case of the problem of finding a zero of the sum of two monotone operators A
and C acting on a Hilbert space X , i.e.,

find x ∈ X such that 0 ∈ Ax+ Cx, (2.41)

if ones makes A = ∇f and C = ∂g.
We now list some properties of operators. Let D be a nonempty set of X and let

R : D → X be a nonexpansive operator. We say that an operator A : D → X is
λ-averaged if there exists λ ∈ ]0, 1[ such that

A = (1− λ)Id + λR. (2.42)

An averaged operator A obeys the following contractive property [11, Proposition 4.25]:

‖Ax−Ay‖2 ≤ ‖x− y‖2

− 1− λ
λ
‖(Id−A)x− (Id−A) y‖2 , ∀x ∈ D, ∀y ∈ D. (2.43)

When λ = 1/2, A is said to be firmly nonexpansive. Proximal operators [cf. Eq. (2.8)]
are examples of firmly nonexpansive operators [11, Corollary 23.8].
Let β ∈ ]0,+∞[. We say that a (single-valued) operator C : D → X is β-cocoercive if

〈Cx− Cy, x− y〉 ≥ β‖Cx− Cy‖2, ∀x ∈ D, ∀ y ∈ D. (2.44)

An operator C is β-cocoercive if and only if βA is 1
2 -averaged [11, Remark 4.24(iv)].

Let f ∈ Γ0(X ) and let ∇f be β-Lipschitz continuous. Then, according to the Baillon—
Haddad theorem [11, Corollary 18.16], ∇f is 1

β -cocoercive.
The zeros of a monotone operator can be found by using fixed-point methods on

appropriate operators. Let A : X → 2X be a maximally monotone operator and assume
that zer A 6= ∅. Associated to this operator is its resolvent

JτA , (Id + τA)−1. (2.45)
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The set of fixed points of JτA coincides with the set of zeros of A [11, Proposition 23.38].
In order to find one of these zeros, one may consider an iteration of the form

xk+1 = JτAx
k, x0 ∈ X . (2.46)

Algorithm 2 is a particular case of this iteration if one makes A = ∂g, since Jτ∂g = proxτg
[11, Example 23.3].
In general, if one wants to find a fixed point of a nonexpansive operator R, iterations

of the form xk+1 = Rxk—which are known as Banach–Picard iterations—may fail to
find such a point. An alternative is the so-called Krasnosel’skĭı–Mann method:

Algorithm 11: Krasnosel’skĭı–Mann method.
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0;
5 xk+1 ← xk + λk(Rxk − xk);
6 k ← k + 1;
7 end

Under certain conditions, this algorithm converges weakly to Fix R even when R is
merely nonexpansive. The operator T k , Id+λk(R− Id) is a λk-averaged operator and,
consequently, this method can be seen as an iteration of averaged operators.
We now present two algorithms that can be used to solve two different inclusion prob-

lems. The first algorithm can be used to solve the inclusion 0 ∈ Ax+ Cx, where A is a
maximally monotone operator and C is a β-cocoercive operator. It is given by

Algorithm 12: Relaxed forward–backward method (with operators).
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0;
5 vk+1 ← xk − τCxk;
6 xk+1 ← xk + λk(JτAv

k+1 − xk);
7 k ← k + 1;
8 end

Algorithm 4 is a particular case of this algorithm, with A = ∂g and C = ∇f . Algo-
rithm 12, in turn, is a particular case of Algorithm 11, with R = JτA ◦ (Id− τC).
The second algorithm can be used to solve the inclusion 0 ∈ Ax + Bx, where A and

B are maximally monotone operators. It is given by
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Algorithm 13: Relaxed Douglas–Rachford method (with operators).
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0;
5 vk ← JτBx

k;
6 wk ← JτA(2vk − xk);
7 xk+1 ← xk + 2λk(wk − vk);
8 k ← k + 1;
9 end

Algorithm 6 is a particular case of this algorithm, with A = ∂g and B = ∂h. Algo-
rithm 13, in turn, is a particular case of Algorithm 11, with R = (2JτA−Id)◦(2JτB−Id).
Many other algorithms can also be shown to be particular cases of Algorithm 11. In

fact, all the algorithms discussed in this chapter are particular cases of this algorithm,
with the exception of the ones discussed in Section 2.4. There are at least two advantages
in looking at convex problems and at these algorithms as particular cases of monotone
inclusions and of fixed-point methods, respectively: (a) the analysis of the convergence
of these algorithms becomes easier, since one is able to take advantage of the many
results on operator theory that are available from the literature, and (b) besides convex
problems, other problems of interest can also be seen as particular cases of monotone
inclusions.13

In Section 2.3, we described how a preconditioning matrix can be used to increase the
convergence rate of algorithms such as the proximal-point method. In what follows, we
show how a preconditioning operator can be used with a similar goal in the forward–
backward method.
Recall that the forward–backward method can be used to solve the problem

find x ∈ X such that 0 ∈ Ax+ Cx, (2.47)

which has the same set of solutions as the problem

find x ∈ X such that 0 ∈ UAx+ UCx, (2.48)

where U � 0. It may be convenient to solve Problem (2.48) instead of Problem (2.47),
and one can also use the forward–backward method to solve Problem (2.48). In this
case, and in view of Algorithm 11, the nonexpansive operator is R = JτUA ◦ (Id− τUC).
Furthermore, the operator U can be made to vary in each iteration, yielding a variable-
metric method [81].

13Variational-inequalities problems are an example of such problems. See, e.g., [11, Definition 25.12,
Proposition 25.18 and Example 25.19].
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2.6. Comments and references

All the algorithms discussed in this chapter, with the exception of semismooth Newton
ones, can be seen as instances of the Krasnosel’skĭı–Mann method (Algorithm 11). In
Chapter 5, we propose and discuss some properties of an extension of this method, and
show that semismooth Newton methods are instances of it.
Classical references on the topics of convex and of numerical optimization are Rock-

afellar [60], Nesterov [40], Nocedal and Wright [39], and the more recent Bauschke and
Combettes [11]. For more details on optimization algorithms applied to signal and imag-
ing problems, see Burger et al. [82], Chambolle and Pock [83], Combettes et al. [84], and
Combettes and Pesquet [44]. For more details on optimization methods in a general con-
text, see Bottou et al. [74], Komodakis and Pesquet [43], Parikh and Boyd [85], and Ryu
and Boyd [52]. For more details on semismooth Newton methods, see Hintermüller [86]
and Ulbrich [12, 76].
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3. A framework for fast image
deconvolution with incomplete
observations

This chapter describes the contributions of the writer in Simões et al. [9]. We start by
making some practical remarks about the problem of image deconvolution, and by briefly
describing the related problems of image superresolution and of image inpainting with
deblurring. We then proceed to present the contributions of this work.
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3.1. Introduction

Consider the estimation of a sharp image from a blurred one. Let b ∈ N and assume that
the support of the convolution filter has size (2b+ 1)× (2b+ 1) pixels and is centered at
the origin. Let the size of the blurred image be m × n, with m,n ∈ N. To express that
image as a function of the sharp one, we need to consider a region of the sharp image of
size m′×n′, with m′ = m+2b and n′ = n+2b; the central m×n zone of this sharp image
is in the same spatial location as the blurred image. Fig. 3.1 illustrates this situation.
As discussed in Section 1.2, we can express the blurring operation via a linear model

of the form
y = Tx + n, (3.1)

where y ∈ Rmn is the observed image, x ∈ Rm′n′ is the sharp image, T ∈ Rmn×m′n′ is
a block-Toeplitz-Toeplitz-block (BTTB) matrix such that Tx represents the convolution
of the sharp image with the blurring point-spread function (PSF), and n ∈ Rmn is the
observation noise.
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Figure 3.1.: An illustration of the dimensions of the images involved in typical deblurring
problems. a) Blurred image. b) Blurring filter. c) Sharp image.

(a) (b)

Figure 3.2.: Image superresolution: original (a) and superresolved (b) images.

In image deblurring problems, some of the pixels of the blurred image may not be
observed. Examples of such pixels are the pixels corresponding to (a) saturated or missing
pixels, (b) the extra pixels that would have been observed if the sensors that acquired
the image had a higher spatial resolution, and (c) the boundaries of the image. The
estimation of the pixels referred to in points (a) and (b) is related to the problems
of image inpainting with deblurring and of image superresolution, respectively. Image
superresolution is characterized by the generation of high-resolution images from low-
resolution ones—see Fig. 3.2 for an example. This problem can be addressed within the
framework of inverse problems. Let yl denote a given low-resolution image. A possible
way to relate it to its high-resolution version is to consider that yl is a degraded version of
an image x ∈ Rmn, to be estimated. With this in mind, superresolution can be modeled
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(a) (b)

Figure 3.3.: Image inpainting with deblurring: observed (a) and estimated (b) images. In
the observed image, the black rectangles correspond to unobserved regions.

as
yl = STx + n, (3.2)

where yl ∈ R
mn
r2 is the observed image, r ∈ N denotes a spatial downsampling factor,

and S ∈ R
mn
r2
×mn is a sampling matrix whose columns are a subset of the columns of the

identity matrix. In this context, T is normally chosen to correspond to an anti-aliasing
filter. We can obtain an estimate of x by solving a problem of the form of (1.9) with
the data-fitting term based on Eq. (3.2) instead of on Eq. (1.1). A related problem is
image inpainting, which can be coupled with image deblurring. Imagine that, for some
reason, there are missing pixels in a given image. Image inpainting, per se, refers to
the problem of recovering those pixels. If the observed image is also blurred, one faces
the problem of image inpainting with deblurring: as an example, consider Fig. 3.3. In
this case, model (3.2) can still be used, but S is the identity matrix with some of its
rows eliminated, namely the ones corresponding to the elements of x that are missing in
yl, and T corresponds to the blurring filter . Regarding point (c), above, consider again
Fig. 3.1. Often, in simple deconvolution problems, one is only interested in estimating the
central m× n region of x, which we shall designate by cropped sharp image, denoted by
x̄. If one is interested in estimating the whole image x, this can be seen as an inpainting
problem, since we are estimating the pixels of x in a boundary zone of width b around
the central m × n region, and this zone is not present in y. Even if we do not wish to
estimate this zone, the need to properly handle the boundary zone still exists in most
real-life deconvolution methods, as we discuss below.
In imaging problems, one is faced with the prospect of dealing with millions of variables.

As an example, an optimization problem of the form of (1.9) involving a 1024×1024 image
has 1,048,576 variables. To explicitly store in a computer the convolution matrix T that
is associated with such an image would require vast amounts of memory. Fortunately,
as mentioned in Section 1.2, these matrices are highly structured, and, under certain
assumptions, it is possible to take advantage of this fact to store them with the same
memory requirements as those of an image. Nevertheless, a difficulty with the use of
model (3.1) is that deconvolution methods based on it normally involve products by
large BTTB matrices and/or the inversion of such matrices, and both operations are
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computationally heavy. In order to obtain fast deconvolution methods, many authors
replace model (3.1) with models that involve simpler computations. One of the most
frequently used models is

y = Tx̄′ + n, (3.3)

in which T is a block-circulant-circulant-block (BCCB) matrix of size mn×mn, and x̄′ ∈
Rmn is an approximation of the true cropped sharp image x̄. Tx̄′ represents the circular
convolution of x̄′ with the blurring PSF. The fact that x̄′ is only an approximation
of the true image x̄ means that model (3.3) is not an exact model of the convolution
process. As a consequence of this, the sharp images obtained by these methods normally
exhibit artifacts, typically in the form of ringing. The use of model (3.3) is often referred
to as the use of periodic boundary conditions, because it is equivalent to the use of
model (3.1) with the true sharp image x replaced with an image obtained by periodically
repeating x̄ in the horizontal and vertical directions, and then retaining only the central
m′×n′ region of the resulting periodic image. Other possibilities exist for obtaining fast
deconvolution methods, besides the use of periodic boundary conditions. For example,
one can use reflexive or anti-reflexive boundary conditions, which, under appropriate
assumptions, lead to matrices that are diagonalizable, respectively, by the 2-D discrete
cosine transform and the 2-D discrete sine transform, and therefore also yield significant
speed advantages [87, 14, 88]. However, the use of any of these boundary conditions
(and, in fact, the use of any artificially imposed boundary conditions) corresponds to the
use of an inexact convolution model, and therefore gives rise to artifacts.
The speed advantage of using model (3.3) comes from the fact that BCCB matrices

have a particular spectral decomposition, T = F∗ΛF, where F is the 2-D discrete Fourier
transform (DFT) unitary matrix, and the elements of the diagonal matrix Λ are the
coefficients of the DFT of the blurring PSF. Matrix-vector multiplications with F and
F∗ can be performed with the fast Fourier Transform (FFT), which is an algorithm
that computes the DFT of a vector in an efficient way. It uses a “divide-and-conquer”
strategy that takes advantage of the inherent redundancy of the Fourier transform. For
a generic x, the use of the FFT allows one to reduce the number of operations required
to compute Tx from O[(mn)2] to O[mn log(mn)], and the number of operations required
to compute T−1x from O[(mn)3]—as is the case when one inverts a generic matrix—to
O[mn log(mn)]. As an example of the use of the FFT, consider a version of Problem (1.6)
that is under the assumption that T is BCCB, i.e., a version with the data-fitting term
based on model (3.3). The solution to this problem is given by

x̄′ = F−1 {(F∗{t} ⊗ F{y})� (F∗{t} ⊗ F{t}+ µ)} , (3.4)

where ⊗ and � denote element-wise multiplication and division, respectively, F{·} and
F−1{·} denote the direct and inverse DFT, respectively, ·∗ denotes the conjugate opera-
tor, and t ∈ Rmn is a vector representing the lexicographical ordering of the filter.1

The occurrence of artifacts can be completely eliminated by the use of an exact model
of the convolution process. A relatively recent method, which we shall designate by

1Matrix T and vector t both refer to the same object (the columns of T are permutations of t).
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AM [89, 90], uses a model of the form

y = MT̃x + n, (3.5)

in which T̃ is an m′n′ ×m′n′ BCCB matrix that corresponds to a circular convolution
with the blurring PSF, and M is an mn ×m′n′ masking matrix that selects, from T̃x,
only the pixels that correspond to the observed image, discarding a boundary zone of
width b in the periphery of the image T̃x. The circular convolution T̃x in Eq. (3.5) only
differs from the linear (i.e., non-circular) convolution Tx of Eq. (3.1) by the presence of
that boundary zone, and therefore Eq. (3.5) is an exact model of the convolution pro-
cess. Computationally, this method has the advantage of using a diagonalizable matrix,
T̃, but needs to deal with the fact that MT̃ is not easily diagonalizable. This difficulty is
circumvented, in AM, through an adaptation of alternating-direction method of multipli-
ers (ADMM) [64, 91]. By means of the splitting of a variable, AM decouples the matrix
M, which is diagonalizable in the spatial domain, from T̃, which is diagonalizable in the
frequency domain, thereby allowing a significant speedup to be achieved. The matrix
M can also be used to accommodate incomplete observations on x, similarly to what is
done in Eq. (3.2) with matrix S.

3.1.1. Contributions and outline

In Simões et al. [9], we propose a new framework for solving deconvolution problems
with unobserved pixels. This framework is an efficient, high-quality alternative to the
use of heuristic methods—such as edge tapering [92]—to reduce the artifacts produced
by deconvolution methods that assume periodic boundary conditions. It can be used
with any fast deconvolution method, irrespective of the specific boundary conditions
that it assumes. An example of how this framework can be used to extend an off-the
shelf, state-of-the art deconvolution method to the use of unknown boundaries is also
discussed. Furthermore, we propose a specific implementation of this framework, based
on ADMM. We provide a proof of convergence for the resulting algorithm, which can be
seen as a “partial” ADMM, in which not all variables are dualized. We report experimen-
tal comparisons with other primal–dual methods, where the proposed one performs at the
level of the state of the art. Four different kinds of applications are tested in the experi-
ments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing,
all with unknown boundaries.

This chapter describes the contributions of that work and presents some of the exper-
imental results. It is structured as follows. Section 3.2 describes the framework used to
solve deconvolution problems with unobserved pixels. Section 3.3 discusses the “partial”
ADMM method. Section 3.4 details where that work was made available to the research
community. Section 3.5 concludes.
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3.2. Proposed framework

We propose a deconvolution framework that uses a different convolution model from (3.5).
The convolution process is modeled as

ỹ = T̃x + n, (3.6)

in which T̃ is the same BCCB matrix as in Eq. (3.5), and ỹ ∈ Rm′n′ represents the
observed image y surrounded by the boundary region of width b (see Fig. 3.1). In the
proposed framework, this boundary region is estimated, instead of being masked out, as
happened in AM. We present two implementations of this framework: an implementation
using an off-the shelf deconvolution method that assumes circular boundary conditions,
and an efficient implementation based on ADMM in which not all variables are dualized,
and for which we present a convergence theorem. We postpone the discussion of the
latter implementation to Section 3.3.
Deconvolution methods that do not impose boundary conditions, such as AM and the

method proposed by us, are often referred to as methods that use unknown boundaries.
We use that nomenclature in this work.
As previously mentioned, the framework that we propose is based on model (3.6). From

here on, we express the extended blurred image ỹ in a form that is more convenient for the
treatment that follows, and that encompasses not only the case of unknown boundaries,
but also all the other cases of unobserved pixels. We denote the number of observed
pixels of the blurred image by p, and the number of unobserved pixels (including the
above-mentioned boundary zone) by d. Let z ∈ Rd and y ∈ Rp be column vectors
containing, respectively, the elements of ỹ that correspond to unobserved pixels and those
that correspond to observed pixels. In a simple deconvolution problem with unknown
boundaries, z contains the boundary zone, and y contains the observed blurred image.
In a combined deconvolution and inpainting problem, z contains both the boundary zone
and the additional unobserved pixels, and y contains the pixels of the blurred image that
were actually observed. We reorder the elements of the extended image ỹ as [ yz ] = Pỹ,
where P is an appropriate permutation matrix, so that the observed pixels are in the
first positions and the unobserved pixels are in the last positions of the vector [ yz ].
Conceptually, the proposed framework is rather simple. It consists of using the blurring

model (3.6), and alternately estimating x and z, as shown in Fig. 3.4. In this framework,
step 2, which estimates x, can be performed, essentially, with any existing deblurring
method that assumes circular boundary conditions.2 Step 3 is performed by just com-
puting the reconstructed blurred image, given by T̃x, and selecting from it the pixels
that correspond to z.
An important difference of the proposed framework relative to most published deblur-

ring methods, including AM, is that, in this framework, the unobserved pixels of the
blurred image (represented by z) are explicitly estimated. This means that we have one
more variable to estimate (z).

2The framework can also be used with methods that use other boundary conditions. The only difference
is in the structure of the matrix T̃ used in model (3.6). Instead of being a BCCB matrix, it has the
proper structure for the boundary conditions under consideration.
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Framework 1
1. Initialize x1 and z1. Let k = 1.
repeat

2. Compute xk+1 given xk, zk.
3. Compute zk+1 given xk+1.
4. Increment k.

until stopping criterion is satisfied.

Figure 3.4.: The proposed deblurring framework.

As given in Fig. 3.4, the proposed framework is rather general. It can be used to design
new deblurring methods, an example of which is the efficient ADMM-based method that
we propose in Section 3.3. It is also an efficient, high-quality alternative to methods such
as edge tapering, to convert existing deblurring methods that impose specific boundary
conditions into methods that work with unknown boundaries. We illustrate this in Sub-
section 3.2.1, by using the proposed framework to convert an off-the-shelf, state-of-the-art
deblurring method that assumes circular boundary conditions—IDD-BM3D [93]—into a
method that uses unknown boundaries.

3.2.1. Selected experimental results

This subsection illustrates the use of the framework of Fig. 3.4 with a state-of-the-art
deblurring method, which assumes periodic boundary conditions, by adapting it to the
unknown-boundaries situation. We plugged into the mentioned framework, without mod-
ification, a fast, high-quality FFT-based deconvolution method: IDD-BM3D [93], which
assumes circular boundary conditions to be able to perform fast matrix operations in the
frequency domain by means of the FFT. It takes a frame-based approach to the decon-
volution problem, and performs both a deconvolution and a denoising step. Additionally,
it runs another deconvolution method [94] for initialization. We used the published IDD-
BM3D software, without change, to implement step 2 of Framework 1. As a result of
the incorporation into the framework, we obtained a deconvolution method that uses
unknown boundaries, and that still retains the speed of FFT-based matrix operations.
We compared the results of the resulting method with those of the commonly adopted
solution of using edge tapering to deal with the unknown boundaries.
In the experimental tests, we compared three different situations: (a) direct applica-

tion of IDD-BM3D without the use of Framework 1, to assess the effect of the method’s
assumption of circular boundary conditions on an image that did not obey those con-
ditions; (b) similar to (a), but preprocessing the observed image by edge tapering, to
reduce the effect of the mentioned assumption; and (c) the use of IDD-BM3D within
Framework 1, as described above. We ran the experiment using the cameraman image
with size 256 × 256 pixels, blurred with a 9 × 9 boxcar filter, and with additive i.i.d.
Gaussian noise with a blurred-signal-to-noise ratio (BSNR) of 40 dB. See [9, Section
III.A] for more implementation details.
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(a) (b) (c)

Figure 3.5.: Use of the IDD-BM3D deblurring method and Framework 1 in a blurred
image with unknown boundaries. (a) Plain IDD-BM3D (ISNR = -14.62 dB).
(b) IDD-BM3D with pre-smoothing of the blurred image’s borders (ISNR =
8.27 dB). (c) Framework 1, with step 2 implemented through IDD-BM3D
(ISNR = 9.64 dB).

The results of the tests, along with the corresponding improvement in SNR (ISNR)
values, are shown in Fig. 3.5. As can be seen, using IDD-BM3D without taking into
account that the boundary conditions were not circular [situation (a)] produced very
strong artifacts. With edge tapering [situation (b)], the artifacts were much reduced,
although some remained visible; there also was some loss of detail near the image borders.
With the use of IDD-BM3D within Framework 1 [situation (c)], there were barely any
artifacts, and the image remained sharp all the way to the borders. The values of the
ISNR agree with these observations.
The example of the use of IDD-BM3D within the proposed framework illustrates the

fact that this framework can be used to convert existing deblurring methods that assume
artificial boundary conditions to methods that use unknown boundaries. As far as we
know, there is no other published way to accomplish this. This is a simple alternative to
the use of edge tapering, yielding results of better quality.

3.3. “Partial” ADMM

We now introduce the ADMM-based implementation of the proposed framework. We
use the blurring model of Eq. (3.6); the noise n is assumed to be i.i.d. Gaussian. We use
a maximum-a-posteriori (MAP) formulation,3 and consequently, the data-fitting term of
our objective function is given by

f(x, z) =
1

2

∥∥∥∥∥
[
y
z

]
−Hx

∥∥∥∥∥
2

2

, (3.7)

with H = PT̃ and x ∈ Rp+d. The problem to be solved is expressed as

minimize
x,z

f(x, z) + φ(Dx), (3.8)

3See Footnote 8 of Chapter 1 for details.
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where D ∈ Rl×(p+d) is a matrix that extracts a linear representation of the estimated
image, such as edges, l ∈ N is the number of components of that representation, and
φ(Dx) is a regularizer that promotes some desirable characteristic of images, such as
sharp edges.
We start by considering the use of ADMM in its standard form to solve Problem (3.8).

The resulting method is not very efficient, because it involves a step that is computa-
tionally heavy, but it is useful to motivate the method that we propose, and to analyze
some of its properties. We then describe our proposed method, which avoids the above-
mentioned computational inefficiency.
In what follows, we make use of the variables v,d ∈ Rl+d, decomposed as v =

[
vx
vz

]
and d =

[
dx
dz

]
, with vx,dx ∈ Rl and vz,dz ∈ Rd. To apply ADMM to Problem (3.8),

we first define

u ,

[
x
z

]
, K ,

[
D 0
0 Id

]
, f̄(u) , f(x, z),

and also define
ψ(v) , φ(vx),

so that ψ(Ku) = φ(Dx).
We rewrite Problem (3.8) as

minimize
u,v

f̄(u) + ψ(v)

subject to v = Ku.
(3.9)

By applying ADMM to this problem, we obtain the algorithm

Algorithm 14: Standard ADMM.
1 Choose v0 ∈ Rl+d, d0 ∈ Rl+d;
2 Make k ← 1;
3 while stopping criterion is not satisfied do
4 Choose γk > 0;

5

[
xk+1

zk+1

]
∈ arg min

x,z
f(x, z) + γk

2

∥∥∥∥∥vk −K

[
x
z

]
− dk

∥∥∥∥∥
2

;

6 vk+1 ∈ arg min
v

ψ(v) + γk

2

∥∥∥∥∥v −K

[
xk+1

zk+1

]
− dk

∥∥∥∥∥
2

;

7 dk+1 = dk −

(
vk+1 −K

[
xk+1

zk+1

])
;

8 k ← k + 1;
9 end

which we refer to as standard ADMM. As mentioned above, the standard ADMM is not
normally computationally efficient. This is due to the fact that, in Line 5 of Algorithm 14,
x and z need to be estimated simultaneously, and this normally involves the inversion of a
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3. A framework for fast image deconvolution with incomplete observations

large matrix that is not easily diagonalizable. To motivate the solution that we propose,
we note that if, in Problem (3.8), we consider minimizing relative to x and to z separately,
only the minimization relative to x is difficult to perform. The minimization relative to z
is easy to implement in a computationally efficient way, because it is the minimization of
a quadratic function, and the matrix H = PT̃ is diagonalizable in the frequency domain
(with an appropriate permutation, corresponding to the product by P). In view of this,
we separate the minimization relative to x from the minimization relative to z, applying
them in an alternating manner, and we apply the ADMM machinery only to the variable
x, instead of applying it to

[
x
z

]
, as happened in the standard ADMM. Of course, the

convergence guarantees of the standard ADMM do not apply to the proposed method.
We, therefore, presented a convergence proof for it (see Corollary 3.3.2, below).
Since we are applying the ADMM machinery only to x, Line 5 of Algorithm 14 is

replaced by a minimization of

f(x, z) +
µ

2

∥∥∥vix −Dx− dix

∥∥∥2
, (3.10)

which we solve approximately by means of an alternating minimization on x and z
through one or more block-Gauss-Seidel (BGS) passes. Furthermore, Lines 6 and 7 have
to be modified so as to refer only to x, and not to [ xz ]. If we use just one BGS pass to
minimize (3.10), the complete method corresponds to the algorithm

Algorithm 15: “Partial” ADMM.
1 Choose v0

x ∈ Rl, d0
x ∈ Rl,v0

z ∈ Rd, d0
z ∈ Rd;

2 Make k ← 1;
3 while stopping criterion is not satisfied do
4 Choose γk > 0;

5 xk+1 ∈ arg min
x

f(x, zk) + γk

2

∥∥∥vkx −Dx− dkx

∥∥∥2
;

6 zk+1 ∈ arg min
z

f(xk+1, z);

7 vk+1
x ∈ arg min

vx
φ(vx) + γk

2

∥∥∥vx −Dxk+1 − dkx

∥∥∥2
;

8 dk+1
x = dkx − (vk+1

x −Dxk+1);
9 k ← k + 1;

10 end

If we use more BGS passes, instead of just one, there is an inner loop consisting of Lines
5 and 6.
As can easily be seen, this method falls within the scope of Framework 1, the main steps

being Lines 5 and 6; Lines 7 and 8 are added by the use of the ADMM technique. We
call Algorithm 15 (with one or more BGS passes) the “partial” ADMM ; this designation
stems from the fact that we only apply the ADMM technique to x, and not to [ xz ].
We now address the issue of the convergence of the “partial” ADMM. We start by

proving (in Theorem 3.3.1) the convergence of a somewhat more general method, and we
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then show (in Corollary 3.3.2) that the “partial” ADMM is a special case of that method,
and is therefore encompassed by Theorem 3.3.1.
Until now, we have assumed the data-fitting term f to be given by Eq. (3.7). For the

proof of convergence, we allow f to have the more general form

f(x, z) ,
1

2

[
x
z

]T [
A B
BT C

] [
x
z

]
+

[
x
z

]T [
e
f

]
+ g, (3.11)

where A ∈ R(p+d)×(p+d), B ∈ R(p+d)×d, C ∈ Rd×d, e ∈ Rp+d, f ∈ Rd, and g ∈ R, and
where we assume that C is positive definite (PD) and that A − BC−1BT is positive
semidefinite (PSD). These assumptions guarantee that f is convex, and are not very
restrictive. The set of functions that they encompass is only slightly less general than
the set of all convex quadratic functions. To obtain the latter set, the assumption on C
would have to be relaxed to being PSD, but additional assumptions would need to be
made (see, e.g., [95, Appendix A.5.5]).
The convergence result is given by the following theorem:

Theorem 3.3.1. Assume that, in Problem (3.8) with f defined by Eq. (3.11), C is
PD, A − BC−1BT is PSD, D is full column rank, and φ is closed proper convex and
coercive. Define K =

[
D 0
0 Id

]
. Then, the set of solutions of Problem (3.8) is non-empty,

the sequence
{[

xk

zk

]}
generated by the “partial” ADMM converges to a solution of that

problem, and the sequence {vp} converges to K
[
x∗
z∗
]
, where

[
x∗
z∗
]
is the limit of

{[
xk

zk

]}
.

Proof. For the proofs of this theorem and the following corollary, see [9, Appendix B].

Corollary 3.3.2. For Problem (3.8) with f given by Eq. (3.7), Theorem 3.3.1 applies.

Regarding the practical implementation of the “partial” ADMM, the solutions of the
minimization problems that constitute Lines 5 and 6, with f given by (3.7), are given,
respectively, by

xk+1 =
[
HTH + µDTD

]−1[
HTMT

z zk + HTMT
y y + µDT (vkx − dkx)

]
=
[
HTH + µDTD

]−1[
HT

[
y
zk

]
+ µDT (vkx − dkx)

] (3.12)

and
zk+1 = MzHxk+1, (3.13)

where My = [Ip 0] is of size p× (p+ d) and Mz = [0 Id] is of size d× (p+ d). Matrices
My and Mz are masking matrices and, in particular, My is equivalent to the masking
matrix M used in the AM method (3.5), i.e., M = MyP.
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3. A framework for fast image deconvolution with incomplete observations

In practice, we have found it useful to use over-relaxation with a coefficient of 2 in the
update of z, and therefore we replace Eq. (3.13) with

zk+1 = 2MzHxk+1 − zk. (3.14)

In (3.12), HTH = T̃TPTPT̃ = T̃T T̃ is a BCCB matrix. If DTD is also BCCB, the
matrix inverse in (3.12) can be efficiently computed by means of the FFT. On the other
hand, since H = PT̃, products by H or HT can be computed as products by the BCCB
matrix T̃ followed or preceded by the appropriate permutation, and therefore can also be
efficiently computed by means of the FFT. Consequently, the iterations of the proposed
method are computationally efficient, having complexity O[(p+ d) log(p+ d)].

3.3.1. Selected experimental results

In this subsection, we discuss some of results presented in Simões et al. [9] regarding
the “partial” ADMM discussed before. We compared it with two published state-of-the
art methods. The first of these is AM, which was chosen because it is an ADMM-based
method specifically developed for the problem of deblurring with unobserved pixels, and
therefore bears some resemblance to the proposed partial ADMM. The second method
used for comparison was the primal–dual algorithm of Condat (cf. Algorithm 8), which
we shall denote by CM. We chose this method because it can be expressed in a form
that does not require the inversion of matrices related to the blurring operator, and
this inversion is a computational bottleneck of most deblurring methods based on exact
blurring models. For completeness, we also show results obtained with an approximation
of the standard ADMM (cf. Algorithm 14). As discussed in the previous section, the
direct application of that method is impracticable, even for small images, in most present-
day computers. We give the results obtained by approximately solving the problem in
Line 5 through the conjugate-gradient method. We denote this method by ‘ADMM-CG’.
As in [89, 90, 96], we used isotropic total variation (TV) [cf. Eq. (1.13) with p = 2]

to regularize our problem, i.e., we made φ(Dx) = λ
∑p+d

j=1

√
(Dhx)2

j + (Dvx)2
j , with

D = [DT
hDT

v ]T . With this regularizer, we can guarantee the uniqueness of the solution of
Problem (3.8) if N (H) ∩ N (D) = {0}, which is true if 1p /∈ N (H), where N (·) denotes
the null space of a matrix. The latter condition is normally verified, since real-world blur
kernels usually have nonzero direct-current (DC) gain.
The guarantee of convergence given by Theorem 3.3.1 requires that matrix D be full

column rank. An assumption of this kind is common in the literature, when studying
the convergence of primal–dual methods, even though it can be relaxed in some cases
(see, e.g., [91] for the ADMM case). With the isotropic TV regularizer, D is not full
column rank (its rank is p+d−1), which means that we did not have a formal guarantee
of convergence of the proposed method in our experimental tests. This was not the
case for AM, where the use of an extra variable splitting makes D full rank. It was
also not the case for CM, in which D does not need to be full rank. In practice, we
found that the four methods always converged, and we had some experimental evidence
that they all converged to the same solution, as reported ahead. If we wished to have
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a formal guarantee of convergence of the proposed method, we could have used one of
two approaches: (a) to use a new variable to decouple the convolution operator from
x, which would lead to, e.g., D = [DT

hDT
v HT ]T , which is full column rank if N (Dh) ∩

N (Dv)∩N (H) = {0} (the regularizer would need to be changed accordingly), or (b) to
modify the discrete difference matrices, making them full rank, e.g., by adding to them
εIp+d with a small ε > 0.
In the proposed method, the complexity of an iteration was dominated by FFTs:

three for Lines 5 and 6, and one for Line 7; the number of FFTs thus depended on the
number of BGS passes (each pass involved three FFTs). The other two methods both
involved four FFTs per iteration.4 Our method required the storage of one variable with
dimension d and five with dimension p+ d. AM required the storage of seven variables
with dimension p+ d, and CM required the storage of four with dimension p+ d.
As already mentioned, another parameter of our method is the number of BGS passes.

The proof in [9, Appendix B] assumes that a single pass is used, and is easily extendable
to any fixed number of passes. If the number of passes changes along the iterations, the
proof still applies if that number becomes fixed after a certain number of iterations. For
setting this parameter, we found that a simple strategy was useful: for a blur of size
(2b+ 1)× (2b+ 1), we set the number of passes to b. We found this strategy to yield a
good choice of the number of passes, irrespective of the noise level of the observed image.
In what follows, we report the results obtained using this adaptive strategy (designated
by ‘Proposed-AD’), and also the results obtained with just one BGS pass (designated by
Proposed-1’); the latter are reported because they correspond to an especially simple,
and therefore interesting situation. For more details on the implementation, parameter
tuning, and convergence guarantees, see [9, Section III.B].
To check whether the four methods converged to the same result, we ran them for a

very large number of iterations (106) in a few of the cases mentioned ahead, and found
that, in each case, the results were essentially the same for all methods: the root-mean-
squared error (RMSE)5 among the results from different methods were always below
10−7, which corresponds to images that are visually indistinguishable. Given this, we
arbitrarily chose, for all tests, the results of one of the methods (AM), after the mentioned
106 iterations, as representatives of the solutions of the corresponding problems. We
used these representatives as reference images for the evaluation of the quality of the
results of the four methods. Our choice of AM to compute the reference images did
not especially benefit this method relative to the other ones, because, if we had chosen
any of the other two methods instead of AM, the RMSE values of the results of the
tests, computed relative to them, would have been essentially the same. We did not use
the original sharp images as references, for two reasons. First, given the experiments
mentioned in the beginning of this paragraph, we had good reasons to believe that the

4The publicly available implementation of AM requires seven FFTs per iteration.
5The RMSE was defined as

RMSE =

√√√√ 1

m′ × n′
m′×n′∑
i=1

(xi − xri )2

where xi and xri denote, respectively, the pixels of the estimated image and of the reference image.
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four methods converged to the same fixed point, in each problem. Second, the solutions
of the optimization problems were slightly different from the original sharp images, due to
the presence of the noise and of the regularizer, and our main interest was in assessing the
speed of convergence of the methods to the solutions of the optimization problems, not
in the recovery of the original images. If we had used the original images as references,
it might happen that, in their path to convergence, some of the methods would pass
closer to those images than other methods, and this could make them stop earlier. This
would give them an apparently better speed, while they might not truly have a better
convergence speed. In what follows, when we mention RMSE values, these were computed
relative to the above-mentioned reference images, using the whole images, including the
boundary zone, in the computation.
We used, in the deblurring tests, two well-known images: Lena (in grayscale) and

cameraman, both of size 256× 256 pixels. These images were blurred with boxcar filters
of sizes between 3×3 and 21×21, and with truncated Gaussian filters with supports of the
same sizes; for a Gaussian filter with a support of size l× l, we used a standard deviation
of
√
l. Fig. 3.6 illustrates the behavior of the four methods during the optimization for

one of these tests (cameraman image with a 13×13 boxcar blurring filter). The estimated
images from all the methods were visually indistinguishable from one another. Figure 3.7
shows a result of the Proposed-AD method. For more results, see [9, Section III.B and
Appendix C]. In summary, the Proposed-AD method was faster than AM for small and
medium-sized boxcar blurs and for small Gaussian blurs, the two methods had similar
speeds for large boxcar blurs and medium-sized Gaussian blurs, and AM was faster for
large Gaussian blurs. For the application of the proposed method to the problems of
image deblurring with inpainting, image superresolution, and image demosaicing, see [9,
Section III.B].
The proposed partial ADMM implementation of Framework 1 (more specifically, the

Proposed-AD form) showed a performance similar to the performance of the state-of-the-
art AM method, both in terms of final results and of computational speed. CM yielded
similar deblurred images, but showed a significantly lower computational performance.
We conjecture that this was due to the fact that both the proposed method and AM,
being based on ADMM, make use of second-order information on the objective function
(in terms of the matrix HTH + µDTD). CM, on the other hand, does not use any
information of this kind. This difference in speed agrees with our experience in other
image enhancement problems, in which we have repeatedly found CM-like methods to
be significantly slower than ADMM-based ones. For further discussion of the use of
second-order information in ADMM, see Section 5.3.

3.4. Dissemination and addendum

The proposed framework and ADMM-based method are detailed in a journal paper [9].
Additionally, a MATLAB impementation of the ADMM-based method is available at
https://github.com/alfaiate/DeconvolutionIncompleteObs.
For the specific case of superresolution, two methods were recently proposed by Wei
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Figure 3.6.: Deblurring: RMSE of the estimated images as a function of running time,
for the various methods. This test used the cameraman image with a 13×13
boxcar blurring filter.
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Figure 3.7.: Deblurring: observed (a) and estimated (b) images using the Proposed-AD
method. The experiments were run for the cameraman image with a 13×13
boxcar blur.

et. al [97, 98] and by Chan et al. [99]. They are able to efficiently deal with the fact that
matrix T in model (3.1) is a BTTB matrix, and do not require the use of approximate
models.

3.5. Conclusions

We discussed a framework used for deblurring images with unobserved pixels proposed
by us in Simões et al. [9]. This framework can be used to convert most deblurring
methods to unknown boundaries, irrespective of the specific boundary conditions that
those methods assume, being a simple, high-quality alternative to the use of edge ta-
pering. Additionally, we discussed an ADMM-based deblurring method that falls within
the mentioned framework, whose proof of convergence was provided in [9]. This method
can be seen as a partial ADMM with a non-dualized variable. Experimental results on
problems of deconvolution, inpainting, superresolution and demosaicing, with unknown
boundaries, showed, for the proposed method, a performance at the level of the state of
the art.

55





4. Hyperspectral superresolution, data
fusion, and pansharpening

This chapter describes the contributions of the writer in the following works: Simões
et al. [5], Vivone et al. [4], and Veganzones et al. [8]. We start by briefly describing
the problems of hyperspectral superresolution, data fusion, pansharpening, and low-
dimensional-space identification. We then proceed to present the contributions of this
work.
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4.2. Hyperspectral image superresolution: A convex formulation 60
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4.2.2. Estimation of the spatial blur and of the spectral response . . 63
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4.3. Pansharpening based on semiblind deconvolution . . . . . . 68
4.4. Hyperspectral superresolution of locally low-rank images

from complementary multisource data . . . . . . . . . . . . . 71
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4.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1. Introduction

There are two approaches that can be followed when superresolving hyperspectral images
(HSIs). The first one addresses this problem by only processing the observed image (this
is the approach discussed in Section 3.1). The second one takes advantage of additional
sources of information from the same scene (if they exist), such as panchromatic or
multispectral images. HSIs can be combined with these images to produce images with
high spatial and spectral resolution. The problem of combining the different images
constitutes a data-fusion (or sensor-fusion) problem. In this chapter, we focus on the
second approach, which can be addressed within the framework of inverse problems.
We first consider the problem of fusing HSIs and multispectral images (MSIs), since

the problem of fusing HSIs and panchromatic images (PANs) is a particular case of
the former. Consider the use of the notation introduced in Section 1.4, and let the
matrix Z ∈ RLh×nm denote the image with high spatial and spectral resolution that
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is to be estimated (in this case, Z combines the high spatial resolution of MSIs with
the high spectral resolution of HSIs). The hyperspectral (Yh) and multispectral (Ym)
measurements are typically modeled, respectively, as

Yh = ZBM + Nh,

Ym = RZ + Nm,
(4.1)

where the matrix B ∈ Rnm×nm is a spatial-blurring matrix representing the hyperspec-
tral sensor’s PSF in the spatial resolution of Z (the PSF is assumed to be channel-
independent), the matrix M ∈ Rnm×nh accounts for a uniform subsampling of the hy-
perspectral image, and is used to yield the lower spatial resolution of the HSI—the
columns of M are a subset of the columns of the identity matrix—, R ∈ RLm×Lh is a
matrix that accounts for the low spectral resolution of the MSI, and holds in its rows the
spectral responses of the multispectral instrument (one per multispectral channel), and
Nh ∈ RLh×nh and Nm ∈ RLm×nm represent i.i.d. noise.
This model can also address the problem of fusing HSIs and PANs by considering

that a panchromatic image can be seen as a single-channel MSI. By making Lm = 1 in
Eqs. (4.1), we can specialize Ym to the single-channel case. Let yp ∈ Rnp be a vector
denoting this single-channel MSI. We can use it to rewrite the bottom equation in (4.1)
as

yp = rTZ + np, (4.2)

where r ∈ RLh and np ∈ Rnp . Typically, np > nm > nh. The problem of fusing
HSIs and PANs is also known as hyperspectral pansharpening. Pansharpening, per se,
designates the remote-sensing problem concerned with the fusion of MSIs and PANs,
and has received considerable attention from the remote-sensing community. For more
details on pansharpening, see, e.g., Amro et al. [100] and Vivone et al. [101]. We also
give a small overview of the topic in [5, Section V.D.1].
Compared to the problem of pansharpening, both the HSI-MSI- and the HSI-PAN-

fusion problems present challenges of their own. Firstly, since HSIs have a very high
dimensionality, the number of variables to estimate is much larger. Secondly, this high
dimensionality also has an impact on the computational performance of the algorithms
devised to address these problems. Finally, the spectral range covered by HSIs is signifi-
cantly larger than the one covered by MSIs or PANs and, therefore, many spectral bands
of HSIs are not included in any band of MSIs or of PANs.
One way to address the problems related to the high dimensionality of HSIs is to

reduce the number of variables involved. This can be accomplished through certain
techniques, and some of them are used as building blocks of the algorithms discussed in
this chapter; in Subsection 4.2.1, we discuss two of these techniques. They are based on
the fact that consecutive bands in a hyperspectral image resemble each other to a high
degree, and this implies that there is a large correlation between them. Additionally,
the number of endmembers in a given scene is typically much lower than the number of
bands, i.e., P � Lh. These two characteristics suggest that the data lies in a manifold
whose dimension is lower than the number of channels of Yh. In this work, we assume
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that this manifold is linear, i.e., that it is vector space.1 Under this assumption, the HSI
has the following linear representation:

Z = EX, (4.3)

where E = [e1, · · · , eLs ] ∈ RLh×Ls is a matrix whose columns span the same space as the
columns of Z, Ls � Lh is the dimension of the low-dimensional space, and X ∈ RLs×nm
is a matrix whose elements are the representation coefficients of Z in the low-dimensional
space.
For an overview of the topic of HSI-MSI-fusion algorithms and hyperspectral super-

resolution, see [5, Section I]. An addendum to that overview is given in Section 4.5.

4.1.1. Contributions and outline

In Simões et al. [5], we propose a method that is able to infer images that combine
the high spectral and high spatial resolutions of hyperspectral images and multispectral
images through the minimization of a convex function containing two quadratic data-
fitting terms and an edge-preserving regularizer. The method can also be used to address
the problem of fusing HSIs and PANs. We also propose a method to estimate the spatial
and the spectral operators linked, respectively, with the HSI and the MSI (or PAN)
acquisition processes.
In addition to the description of the contributions of Simões et al. [5], made in Sec-

tion 4.2, this chapter also introduces, in Sections 4.3 and 4.4, the contributions made by
the writer in the context of the work of Vivone et al. [4] and of Veganzones et al. [8].
Since the writer was not the main contributor to those works, the description of these
contributions given in this work is brief. In Vivone et al. [4], we address an issue present
in the pansharpening algorithms based on the so-called detail-injection model. These
algorithms are usually comprised of two steps: (a) extraction of the spatial details of
the panchromatic image, and (b) their subsequent injection into the multisplectral one.
By “spatial details”, we refer to the spatial characteristics of the PAN that are not ob-
served in the MSI. In order to find these characteristics, one may use a procedure that
requires the application of a low-pass filter to the PAN. The response function of this
filter is typically an approximation of the modulation-transfer function (MTF) of the
multispectral sensor. Current methods to make this approximation can be inadequate in
practice, and we develop a new algorithm for estimating a low-pass filter that only makes
use of the observed MSI and PAN. In Veganzones et al. [8], we take advantage of the
fact that hyperspectral images usually lie in a low-dimensional space to design a method
that addresses the problem of fusing hyperspectral and multispectral images. Methods
based on this fact perform at the level of the state of the art if the HSIs actually lie in
a low-dimensional space. However, if the dimensionality of this space is not low, in the
sense that it is larger than the number of multispectral bands, the performance of these
methods decreases. We propose a local approach to cope with this difficulty by exploiting

1This is a standard assumption in the remote-sensing literature. See Footnote 16 of Chapter 1.
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the fact that real-world HSIs are locally low rank since, in a small spatial neighbourhood,
the number of different materials is typically small.
The structure of this chapter is as follows. Section 4.2 describes the method proposed

by Simões et al. [5]. Subsection 4.2.1 details the data-fusion method, and Subsection 4.2.2
presents the method used to estimate the spatial blur and the spectral linear operators.
Sections 4.3 and 4.4 discuss the contributions of the writer in the context of the works
of Vivone et al. [4] and of Veganzones et al. [8], respectively. Section 4.5 details where
these works were made available to the research community, and lists some related works
that were published after ours.

4.2. Hyperspectral image superresolution: A convex
formulation

This section introduces the ideas presented in Simões et al. [5]. In that work, the problem
of inferring images that combine the high spectral and high spatial resolutions of hyper-
spectral images and multispectral images, respectively, is formulated as the minimization
of a convex function containing two quadratic data-fitting terms and an edge-preserving
regularizer. The data-fitting terms are based on model (4.1), and account for blur,
different resolutions, and additive noise. The regularizer promotes piecewise-smooth so-
lutions with discontinuities aligned across the hyperspectral bands, and is a form of
total-variation regularization that takes into account both the spatial and the spectral
characteristics of the data. It is known as vector total variation (VTV) [102]. In order to
solve the optimization problem, we use an ADMM-based method called split augmented-
Lagrangian shrinkage algorithm (SALSA) [64], and explore the inherent redundancy of
the images with data-reduction techniques to formulate the problem in a computationally
efficient way. This method, which is termed HySure, for Hyperspectral Superresolution,
allows one to fuse hyperspectral data with either multispectral or panchromatic images.
It outperformed the state of the art at the time of its publication, as illustrated in a
series of experiments with simulated and real-life data. Additionally, we also devise a
method to estimate the spatial blur B and the spectral blur R linear operators.
In what follows, we discuss our two main contributions in that work, namely the data-

fusion method and the method to estimate the operators B and R. We also present some
selected experimental results that compare our method with others from the literature.

4.2.1. Data-fusion method

It may not be practical to work directly on the hyperspectral data due to its high dimen-
sionality. Fortunately, as discussed in Section 4.1, a HSI usually has a representation on
a low-dimensional space, a fact that may be useful when solving inverse problems involv-
ing these images (see below for an explanation). In order to identify this space, we can
use domain-specific techniques or standard techniques. Spectral-unmixing algorithms are
examples of domain-specific techniques, in the sense that take into account the physical
process that gave origin to Yh. In this case, E would be the spectral-signature matrix
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obtained from Yh, and X would represent the abundance fractions of the endmembers
for every pixel of Z. An example of a standard technique is singular-value decomposi-
tion (SVD) [cf. Eq. (1.2)], which can be used to obtain the factorization Yh = UΣV∗,
where U and V are orthogonal matrices and Σ is a rectangular diagonal matrix con-
taining the singular values, which are assumed to be in non-increasing order. Denote by
Σ̂, Û and V̂, respectively, the truncated matrices obtained by discarding the rows and
columns with the smallest singular values from Σ and the corresponding columns of U
and V. A low-dimensional approximation of Yh is given by ÛΣ̂V̂∗. In this approach, we
make E = Û. Due to the low intrinsic dimensionality of the hyperspectral data, most of
the singular values are rather small, allowing a very significant dimensionality reduction
while retaining a rather faithful approximation of Yh. If Nh = 0 and all the discarded
singular values are zero, this representation spans the true signal subspace. If the former
condition on Nh is not obeyed but Nh is i.i.d., this representation corresponds to the
maximum likelihood estimate of that subspace. However, if the noise is non-i.i.d., the
estimation of the subspace is more complex; see, for example, [103] for details, and for
algorithms oriented to subspace estimation in hyperspectral applications.
After identifying the low-dimensional space, the hyperspectral data can than be pro-

jected into it. One may prefer to work directly on the projected data in, e.g., an inverse
problem involving the HSI, since the number of variables to be estimated is significantly
reduced. This has a number of advantages: (a) it is computationally more efficient, (b)
the estimates are normally more accurate, and (c) the signal-to-noise ratio (SNR) of the
HSI is improved [29, Section III.A]. With any of the two factorizations, we replace the
first equation in (4.1) with

Yh = EXBM + Nh, (4.4)

where the error due to the dimensionality reduction has been incorporated into Nh.
The problem that we are trying to solve is strongly ill-posed, and therefore needs

adequate regularization. The regularizer that we use is given by

ϕ
(
XDh,XDv

)
,

nm∑
j=1

√√√√ Ls∑
i=1

{[
(XDh)ij

]2
+
[
(XDv)ij

]2}
, (4.5)

where (A)ij denotes the element in the ith row and jth column of matrix A, and the
products by matrices Dh and Dv compute the horizontal and vertical discrete differences
of an image, respectively, with periodic boundary conditions.2 This regularizer, which
is a form of VTV, imposes sparsity in the distribution of the absolute gradient of an
image, meaning that transitions between the pixels of an image should be smooth in
the spatial dimension, except for a small number of them, which should coincide with
details such as edges. Zhao et al. [104] proposed an isotropic TV scheme for hyperspectral
image deblurring in a band-by-band manner. This means that each band was regularized
independently from the other ones. This approach has a shortcoming: it does not take
into account that edges and other details normally have the same locations in most bands.

2See Section 3.1 for a definition of these conditions.
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The vector form of the regularizer, which we use in our work, promotes solutions in which
edges and other details are aligned among the different bands.
We apply the regularizer to the reduced-dimensionality data X, and not to Z itself.

This is indeed reasonable, since the subspace spanned by E is the same as the one where
Z resides (or an approximation, when using truncated SVD), and by regularizing X we
are indirectly regularizing Z.
The optimization problem based on the proposed regularizer is

minimize
X

1

2

∥∥∥Yh −EXBM
∥∥∥2

F
+
λm
2

∥∥∥Ym −REX
∥∥∥2

F

+ λϕϕ
(
XDh,XDv

)
. (4.6)

The first two terms are data-fitting terms and are used to enforce the model defined
in Eq. (4.1). The last term is the regularizer. The parameters λm and λϕ control the
relative weights of the various terms.
Problem (4.6) is convex, but is rather hard to solve, due to the nature of the regularizer,

which is nonsmooth. Additional difficulties are raised by the large size of X and by the
presence of the downsampling operator M in one of the quadratic terms, preventing a
direct use of the FFT in optimizations involving this term. We deal with these difficulties
by using SALSA, which is an ADMM-based method. It involves the introduction of
auxiliary variables into the optimization problem, through the so-called variable-splitting
technique. We split the original optimization variable X into a total of five variables:
one which we still call X, and four auxiliary variables, V1 to V4. Problem (4.6) becomes

minimize
X

1

2

∥∥∥Yh −EV1M
∥∥∥2

F
+
λm
2

∥∥∥Ym −REV2

∥∥∥2

F

+ λϕϕ
(
V3,V4

)
subject to V1 = XB, (4.7)

V2 = X,

V3 = XDh,

V4 = XDv.

For notational simplicity, we define the matrices V and H,

V ,


VT

1

VT
2

VT
3

VT
4

 , H ,


BT

Id
DT
h

DT
v

 ,
and the cost function

f
(
V
)
,

1

2

∥∥∥Yh −EV1M
∥∥∥2

F
+
λm
2

∥∥∥Ym −REV2

∥∥∥2

F

+ λϕϕ
(
V3,V4

)
.
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We can express Problem (4.7) as

minimize
X

f
(
V
)

subject to V = HXT .
(4.8)

This problem has the following augmented Lagrangian

L
(
X,V,A

)
= f

(
V
)

+
µ

2

∥∥∥HXT −V −A
∥∥∥2

F
, (4.9)

where A is the so-called scaled dual variable [91], and µ is a positive constant, called
penalty parameter. We are now ready to apply the ADMM method, which yields Al-
gorithm 16. As we can see, SALSA solves the original, complex optimization problem
through an iteration on a set of much simpler problems. The constraints are taken into
account, in an approximate way, by minimizing the augmented Lagrangian of the problem
relative to the auxiliary variables.

Algorithm 16: Pseudocode for the HySure algorithm.
1 Require: data: Yh, Ym; regularization parameters: λm, λϕ; penalty parameter:

µ; matrices R, B and E;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Xk+1 ← arg min

X
L
(
X,Vk,Ak

)
5 Vk+1 ← arg min

V
L
(
Xk+1,V,Ak

)
6 Ak+1 ← Ak −

[
H
(
Xk+1

)T −Vk+1
]

7 k ← k + 1;
8 end

The minimization with respect to X is a quadratic problem with a block-cyclic system
matrix, which can be efficiently solved by means of the FFT. Minimizing with respect
to the auxiliary variables is done by solving three different problems, whose solutions
correspond to three Moreau proximity operators. The minimization with respect to
V1 is a quadratic problem which is efficiently solved via FFTs, and the minimization
relative to V2 is also quadratic; these two problems involve matrix inverses which can be
computed in advance. Finally, the minimization with respect to V3 and V4 corresponds
to a pixel-wise vector soft-thresholding operation.
The details of the optimization, as well as an analysis of the algorithm’s complexity,

are presented in [5, Appendix].

4.2.2. Estimation of the spatial blur and of the spectral response

In the literature on the topic, the HSI-MSI-fusion problem is very often dealt with as a
non-blind problem, in the sense that the spatial and spectral responses of the sensors are
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assumed to be known [105, 106, 107, 108]. In practice, however, the information that
is available about these responses is often scarce and/or somewhat inaccurate. We deal
with this problem blindly—in the sense that we assume these responses to be unknown—,
formulating another convex problem to estimate them by making only minimal assump-
tions: we assume that the spatial response has limited support and that both responses
are relatively smooth.
In this blind setting, the matrices B and R are estimated from the observed images.

The advantages of doing so are threefold. First, as previously mentioned, the available
information about the sensors can be rather scarce. Second, it may be hard to precisely
adapt that information to the model that is being used for data fusion. Third, there may
be discrepancies between the real spatial and spectral responses and the data supplied by
the manufacturers. These can be due to several causes, such as atmospheric conditions,
postprocessing artifacts, and even the variability within the observed scene [109]. This
problem has been addressed before in the literature. See [5, Section IV] for a review.
From Eqs. 4.1, recall that, without noise,

Yh = ZBM, Ym = RZ,

which implies that
RYh = YmBM. (4.10)

We assume that matrix B accounts for a 2-D cyclic convolution, and that the convolution
kernel has finite support contained in a square window of size

√
nb centered at the origin,

thus containing nb pixels.
Taking Eq. (4.10) into account, we infer R and B by solving the optimization problem

minimize
B,R

∥∥RYh −YmBM
∥∥2

F
+ λbφB(B) + λRφR(R), (4.11)

where φB(·) and φR(·) are quadratic regularizers that are discussed in detail below, and
λb, λR ≥ 0 are the respective regularization parameters. Matrix B, and possibly also
matrix R, are subject to some constraints discussed below.
A special consideration needs to be made regarding the estimation of the spectral

response. This is due to the fact that, when using the observed data, it is not possible
to fully estimate matrix R. The reason for this is that the hyperspectral data normally
span only a low-dimensional subspace of the full spectral space. Only the component
of R parallel to that subspace can be estimated. This is not a drawback, however,
since the component of R orthogonal to that subspace has essentially no influence on
the result of the image fusion. In fact, if we write R = R‖ + R⊥, where R‖ = RP‖
and R⊥ = RP⊥, and P‖ and P⊥ denote the projection matrices onto the subspaces
spanned by the original hyperspectral vectors and onto the subspace orthogonal to it,
respectively, we have RYh = R‖Yh + R⊥Yh = R‖Yh, since R⊥Yh is zero. For the
product RZ, which is involved in the fusion problem, we have RZ ≈ R‖Z, since Z spans
approximately the same subspace as Yh, because it corresponds to an image containing
the same endmembers.
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Let [YmB]:j denote the jth column of YmB, let b ∈ Rnb denote the columnwise
ordering of the convolution kernel, and let Pj ∈ Rnm×nb denote a matrix which selects
from Ym a patch such that

[YmB]:j = (YmPj)b.

With these definitions in place, a slight modification of the Problem (4.11) is

minimize
b,R

nh∑
j=1

∥∥∥RYh,:j −Ym,jb
∥∥∥2

2

+ λbφb(b) + λRφR(R)

subject to bT1 = 1,

(4.12)

where Yh,:j denotes the jth column of Yh, Ym,j ,
[
(YmPcj )

]
∈ RLm×nb , with cj

denoting the column of Ym corresponding to the jth column of Yh, φb(b) , φB(B), and
the normalization condition bT1 = 1 imposes unit DC gain of the blur.
We note that Problem (4.12) is a quadratic program with only equality constraints

and, therefore, using Lagrange multipliers, its solution can be obtained by solving a linear
system of equations. However, even though we have a closed-form solution, because the
size of the optimization variables (i.e., nb+Lm×Lh) is usually of the order of thousands,
it may be useful to solve Problem (4.12) via alternated minimization with respect to b
and R.
The optimization with respect to b leads to the following regularized least-squares

problem:

minimize
b

nh∑
j=1

∥∥∥RYh,:j −Ym,jb
∥∥∥2

2

+ λb

(∥∥Dhb
∥∥2

2
+
∥∥Dvb

∥∥2

2

)
subject to bT1 = 1,

(4.13)

The two last terms of the function being minimized in (4.13) correspond to φb(·), which,
in this case, is a noise-removing regularizer that smooths the estimated convolution kernel
by promoting that the values of the differences between neighboring pixels be small.
As before, Dh and Dv compute the horizontal and vertical discrete differences of the
convolution kernel, with dimensions adjusted for this particular case.
An approximate solution for Problem (4.13) is computed by first relaxing the con-

straint, estimating the filter without the normalization condition, and then normalizing
the result to unit DC gain. The solution of the unconstrained problem is given by

b∗ =
[ nh∑
j=1

YT
m,jYm,j + λb

(
DT
hDh + DT

v Dv

)]−1

[ nh∑
j=1

YT
m,jRYh,:j

]
.

(4.14)
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The support covered by b is specified by the user. We have found, experimentally,
that the choice of this support does not have much influence on the blur estimate, as
long as it encompasses the support of the actual blur.
Concerning the estimation of R, we use the regularizer φR(·) in order to deal with the

indetermination of the orthogonal component, and to reduce estimation noise. In the
cases in which there is information about the overlap between bands of the HSI and the
MSI, we constrain the elements of R that correspond to non-overlapping bands to zero.
The estimation of R can be made independently for each of the MSI bands. Let rTi

denote a row vector containing the ith row of R without the elements that are known to
correspond to hyperspectral bands that do not overlap the ith multispectral band, and
by Yh,i denote the matrix Yh without the rows corresponding to those same bands. The
optimization of (4.12) is decoupled with respect to the rows of R and may be written as

minimize
ri

∥∥rTi Yh,i −Ym,i:BM
∥∥2

2
+ λR

∥∥Dri
∥∥2

2
, (4.15)

in which Ym,i: is the ith row of Ym, and the product by D computes the differences be-
tween the elements in ri corresponding to contiguous hyperspectral bands. The solution
of (4.15) is given by

r∗i =
[
Yh,iY

T
h,i + λRDTD

]−1
Yh,i

[
Ym,i:BM

]T
. (4.16)

The estimation of each of the matrices B and R, as presented so far, requires the
knowledge of the other matrix. In order to estimate both, and instead of using alternat-
ing optimization as proposed before, we adopt an even simpler technique. We start by
estimating R. To do this without knowing B, we first blur both spectral images with
a spatial blur that is much stronger than the one produced by B, so that the effect of
B becomes negligible. This, conveniently, also minimizes the effect of possible misregis-
tration between the hyperspectral and multispectral images. Following this, we estimate
the spectral response R using Eq. (4.16), setting the kernel of the spatial blur between
the strongly blurred multispectral and hyperspectral images to a delta impulse. Finally,
we estimate the spatial blur B using Eq. (4.14) on the original (unblurred) images, with
the value of R just found. Fig. 4.1 summarizes the estimation method.
We now discuss the set of solutions of (4.12), which is an important issue in our

approach to the estimation of b and R, closely related to that of identifiability. Given
that the objective function is quadratic, a sufficient condition for it to have a unique
solution is that its Hessian matrix be PD. Assuming that λb, λR > 0, the null space
associated with the regularization terms is the set

A , {(R,b) : R = c1TLh , b = d1nb , c ∈ RLm , d ∈ R},

where we have assumed that the spectral response of the multispectral channels spans
over the entire Lh hyperspectral bands, and these bands are contiguous in frequency. The
case in which the spectral response of the multispectral channels spans over subsets of
the Lh bands corresponds to a minor modification of the reasoning provided below. The
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case in which the hyperspectral bands are not contiguous is somewhat more elaborate,
but would follow the same line of reasoning.
For any (R,b) ∈ A, we may write

nh∑
j=1

∥∥∥RYh,:j −Ym,jb
∥∥∥2

2
=

nh∑
j=1

∥∥∥yh,jc− ym,jd
∥∥∥2

2
, (4.17)

for some c ∈ RLm , d ∈ R and where yh,j , 1TLhYh,:j and ym,j , Ym,j1nb . Let us suppose
that there exits a nonzero couple (c, d) nulling all the nh quadratic terms in the right
hand side of (4.17). In this case, all vectors ym,j , for j = 1, . . . , nh would be collinear
with c. Having into consideration that the components of ym,j represent the average
intensities in the Lm multispectral bands in the patch Pcj , such a scenario is highly
unlikely, implying that the intersection of the subspace A with the null space associated
with the data term shown in the left hand side of (4.17) is empty, except for the origin.
We conclude, therefore, that the Hessian of the quadratic objective function present in
(4.12) is positive definite and, thus, the solution of the corresponding optimization exists
and is unique. An important consequence of this uniqueness is that the subproblems
(4.13) and (4.15) have unique solutions; moreover, the system matrices present in the
Eqs. (4.14) and (4.16) are nonsingular.

Require: data: Yh and Ym; regularization parameters: λR and λB.
Blur Ym with a strong blur.
Blur Yh with a correspondingly scaled blur.
Estimate R using Eq. (4.16) on the blurred data.
Estimate B using Eq. (4.14) on the original observed data.
Normalize b to unit DC gain.

Figure 4.1.: Summary of the method to estimate the spectral response R and the spatial
blur; note that B and b are just two different ways of expressing this spatial
blur. Ym and Yh refer to the multispectral and hyperspectral observations,
respectively.

4.2.3. Selected experimental results

In this subsection, we discuss some of the results presented in Simões et al. [5]. For more
experimental results, a brief description of the methods used in the comparisons with
our fusion method, details on the implementation of the algorithm, and a description of
the indices that were used to evaluate the quality of the results, see [5, Section V].
One of the datasets that was used to test the different algorithms consisted of images

taken above Paris (see Fig. 4.2a), and was obtained by two instruments on board the
Earth Observing-1 Mission (EO-1) satellite, the Hyperion instrument and the Advanced
Land Imager (ALI). Hyperion is a hyperspectral imager with a spatial resolution of
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30 meters; the ALI instrument provides both multispectral and panchromatic images at
resolutions of 30 and 10 meters, respectively [110].3 The hyperspectral and panchromatic
images were directly used for experiments on HSI-PAN fusion, and therefore we had
no access to the ground truth. We hence only show false color representations of the
estimated images, for visual inspection. Fig. 4.2 shows the results. For experiments on
the fusion of hyperspectral and multispectral images, we needed the HSI to have lower
resolution than the MSI, and therefore we first reduced the spatial resolution of the
hyperspectral image by blurring it with a low-pass filter and downsampling. The original
hyperspectral image, before blurring and downsampling, was used as ground truth. The
results of these tests are shown in Fig. 4.3. Fig. 4.4a shows the RMSE between the
ground truth and the images estimated by both methods for each pixel (a RLh vector),
with the results sorted in ascending order of error. The proposed method surpassed the
other one in all tests.

4.3. Pansharpening based on semiblind deconvolution

This section describes the contribution made by the writer in the context of the work
of Vivone et al. [4]. We follow the formulation of the pansharpening problem described
in Section 4.1. A number of pansharpening algorithms require one to produce a version
of the panchromatic image with the same level of spatial detail as of the multispectral
one. This is accomplished by filtering the observed PAN with an appropriate low-pass
filter. Typically, this is a Gaussian filter whose response function is made to match the
response function of the multispectral sensor (which is measured before launch) as closely
as possible. The algorithms based on a detail-injection model then use this filtered PAN
to produce another image containing only the spatial details that are absent from the
MSI. They do this by subtracting the filtered PAN from the original panchromatic image.
Subsequently, these details are “injected” into the MSI to form a pansharpened image [4,
Section III].
Unfortunately, the measurement of the the response function of the multispectral sen-

sor that is made before launch may differ from the real response function after it, which
poses some problems [4, Section I.A]. We propose a method to estimate a low-pass filter
that does not require the use of before-launch measurements. In fact, we estimate the
relative spatial response between the multispectral and panchromatic sensors directly
from the observed data, and used this estimate as the low-pass filter used to extract the
spatial details of the PAN.
Let Ỹm be a version of the MSI upsampled to the spatial resolution of the PAN and

let pe ∈ Rnp denote an approximation of the observed PAN by linearly combining the
different bands of the spatially upsampled version of the MSI. This approximation is
termed the equivalent panchromatic image and is defined as

pe , rTYm, (4.18)

3More information is available at http://eo1.gsfc.nasa.gov/, http://eo1.usgs.gov/sensors/ali
and http://eo1.usgs.gov/sensors/hyperioncoverage.
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4.3. Pansharpening based on semiblind deconvolution

(a) Observed
panchromatic
image.

(b) Observed hy-
perspectral
image.

(c) HySure’s result. (d) GSA’s result.

(e) GS’s result. (f) HPF’s result. (g) BT’s result. (h) FIHS’s result.

(i) PCA’s result.

Figure 4.2.: Results of the HSI-PAN fusion. All images, except (a), are in false color.

where Ym is obtained by stacking Ỹm with a row vector composed of all ones, i.e.,
Ym =

[
Ỹm

1T

]
. Note that r is unkown and needs to be estimated. Additionally, let

h ∈ Rnp denote the low-pass filter to be estimated. We assume this filter to have unit
DC and to have finite support, which are reasonable assumptions for real-world filters.4

The filtered version of the observed PAN is given by Yph, which represents in matrix-
vector notation the linear convolution between the panchromatic image yp and h.

4This is similar to what is done in Problem (4.12).
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(a) Observed
multispec-
tral image.

(b) Observed
hyper-
spectral
image.

(c) HySure’s re-
sult.

(d) ZBS’s
result.

Figure 4.3.: Results of the HSI-MSI fusion. All images are in false color. Again, Figs. 4.3c
and 4.3d are very similar to Fig. 4.3a ldue to the false color rendering, but
they have 128 bands, while Fig. 4.3a has only nine.
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Figure 4.4.: Results of the HSI-MSI fusion. The results are in ascending order.

The method used to estimate both h and r hinges on the fact that, under ideal condi-
tions, pe and Yph are the same [4, Section II]. Based on this, we formulate the following
problem:

minimize
h,r

∥∥∥rT Ỹm −Yph
∥∥∥2

2
+ λ ‖h‖22 + µ

(
‖Dvh‖22 + ‖Dhh‖22

)
subject to hT1 = 1, h ∈ H,

(4.19)

where matrices Dh and Dv stand for the first-order finite differences operator in the
horizontal and vertical directions, respectively, the constraint hT1 = 1 is used to impose
unit DC gain, the constraint h ∈ H is used to impose that h has a finite support—H is
the set of filters with limited support of a given dimension—, and λ > 0 and µ > 0 are
two regularization parameters of the algorithm.

70



4.4. Hyperspectral superresolution of locally low-rank images from complementary multisource data

In order to solve this optimization problem, we follow an alternating minimization
scheme. For details on the implementation of the method, see Vivone et al. [4, Algo.
1]. The proposed technique was compared with the standard one, and found to produce
better results [4, Section IV].

4.4. Hyperspectral superresolution of locally low-rank
images from complementary multisource data

This section introduces the contributions made by the writer in the context of the work
of Veganzones et al. [8]. It takes advantage of the fact that hyperspectral images usually
lie in a low-dimensional space to design a method that address the problem of fusing
hyperspectral and multispectral images. Methods based on this fact perform at the level
of the state of the art if the HSIs actually lie in a low-dimensional space. However, if
the dimensionality of this space is not low, in the sense that it is larger than the number
of multispectral bands, the performance of these methods decreases. In Veganzones et
al. [8], we propose a local approach to cope with this difficulty by exploiting the fact that
real-world HSIs are locally low rank since, in a small spatial neighbourhood, the number
of different materials is typically also small.
As was the case of the work discussed in Section 4.2, the method that we propose

was also built around the standard linear observation model for HSIs and MSIs (4.1).
This work also considers the problem of spectral unmixing, which is discussed in Subsec-
tion 1.4.1.
Many algorithms that fuse HSIs and MSIs take a spectral-unmixing approach to the

problem [8, Section I.A]. By this, we mean that these algorithms make two assumptions:
(a) that each pixel of Z can be described by a mixture of a small number of “pure" spectral
signatures, and (b) that, since HSIs and MSIs are obtained from the same scene, the
observed materials are also the same. These algorithms then work as follows. First, since
the observed HSI has a high spectral resolution, they use a spectral unmixing algorithm to
extract the spectral information from the HSI [8, Section II]. Let D ∈ RLh×nd be a matrix
containing this information, i.e., containing in its columns the spectral responses of the
different nd materials. Since the number of endmembers present in a given pixel is small,
we can assume that the columns of Z are sparsely represented as linear combinations of
the columns of D. In other words,

[Z]i = Dαi, (4.20)

where [Z]i is a column of Z and αi ∈ Rnd is sparse vector that serves a similar function
as the vector that contains the abundance fractions of the endmembers in Eq. (1.17). By
using Eq. (4.20) and Eqs. (4.1), we can write

Ym = RDA + Nm, (4.21)

where A , [α1, . . . ,αn] is an abundance fraction matrix. By solving Eq. (4.21) to find
A, we can obtain an estimate of Z by using Eq. (4.20).
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4. Hyperspectral superresolution, data fusion, and pansharpening

The success of these approaches depends fundamentally on the ability to find A by
using Eq. (4.21). This may be hard to do, since the matrix RD ∈ RLm×nd is often fat
(Lm < nd), yielding an undetermined system of equations.

The difficulties mentioned in the previous section may be circumvented by tackling the
fusion problem locally instead of globally, i.e., by partitioning the image into patches,
and by following the approach just described independently for each patch. In this way,
if in each patch the number of materials is lower than the number of multispectral bands,
the system is not undetermined anymore.

We explore two alternatives to partition the image into patches: the use of sliding win-
dows and of binary partition trees [8, Sections III and IV, respectively]. By approaching
the problem locally, we find local dictionaries and abundance matrices. Denote these by
Dj and Aj , respectively, where j ∈ {1, . . . , J} refers to each patch and J is the number
of patches. We propose to estimate the matrix Aj via the problem

min
Aj≥0

‖Ym,j −RDjAj‖2F , j ∈ {1, . . . , J} (4.22)

where Ym,j corresponds to the multispectral pixels in patch j. For this problem to be
well-posed, the number of induced endmembers in the dictionary should be lower or
equal to the number of multispectral bands, i.e., it should satisfy the condition nd ≤ Lm.
Note that the matrix R is not assumed to be known beforehand and was estimated by
adapting the technique described in Subsection 4.2.2 [8, Section V].

We showed through experiments, using synthetic and real datasets, that the proposed
local approaches outperform the standard approach [8, Sections VI and VII].

4.5. Dissemination and addendum

The methods described in Section 4.2 are detailed in a journal paper [5]. Additionally,
an earlier conference paper [3] was published with a preliminary version of this work and
a different set of experiments. Furthermore, this method was included in a review paper
by Loncan et al. [6, 7] in the context of the fusion of panchromatic and hyperspectral
images. The MATLAB code used to generate the experiments in Simões et al. [5] is
available at https://github.com/alfaiate/HySure and the code used to generate the
experiments in Locan et al. [7] is available at http://www.openremotesensing.net/
index.php/codes/11-pansharpening/6-hyperspectral-pansharpening-a-review.

The method discussed in Section 4.3 was published in a journal paper [4]. The method
of Section 4.4 is detailed in a journal paper [8]; additionally, earlier conference papers [2,
1] were published with preliminary versions of this work and with a different set of
experiments.
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4.6. Conclusions

In Simões et al., [5, Eq. (23)] needs to be corrected. It should be

X(k+1) =
[(

V
(k)
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(k)
1

)
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]
×
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T
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T
v

]−1
.

(4.23)

After the publication of Simões et al. [5], a number of new methods addressing either
the same problem [111, 112, 113, 114, 115, 116, 117, 118, 119] or variations of it [120]
have been published as well. Wei et. al [97, 98] proposed a method which is able to deal
with the terms involving the downsampling operator M by using the FFT directly.
Yokoya et al. [121] compared HySure with other fusion algorithms, including some that

were published after this method [111, 97, 114] in the context of the problem of fusing
multispectral and hyperspectral images. HySure was found to be the one that “showed
the most consistent and high performance in all tests.”

4.6. Conclusions

We discussed a method proposed by us in Simões et al. [5]. The method, termed HySure,
is used to perform the fusion of hyperspectral images with either panchromatic or mul-
tispectral ones, with the goal of obtaining images that have high resolution in both the
spatial and the spectral domains. This problem is closely related to the pansharpening
one, but presents new challenges due to the much larger size of hyperspectral images
when compared with the multispectral images normally used in pansharpening, and to
the fact that the different images do not normally have a complete spectral overlap. In
addition to performing the fusion, the proposed method is also able to estimate the rela-
tive spectral and spatial responses of the sensors from the data. We formulated the fusion
problem as a convex program, solved via the SALSA—an instance of the ADMM. The
estimation of the relative responses of the sensors was formulated as a convex quadratic
program. Taking advantage of the low intrinsic dimensionality of hyperspectral images
by working on a subspace of the space where those images are defined, and using an
adequate variable splitting, we obtained an effective algorithm which compared quite
favorably with several published methods on both simulated and real-life data.
We also discussed a method, proposed by us in Vivone et al. [4], that is used in

the pansharpening algorithms based on the detail-injection model. In that work, we
estimated the relative spectral response between the multispectral and panchromatic
sensors directly from the observed data, and used this estimate as the low-pass filter
used to extract the spatial details of the PAN. We provided some experimental evidence
of its performance, and the method compared favorably to the state of the art.
Finally, we discussed our work in Veganzones et al. [8], where two methods for hyper-

spectral super-resolution via local-dictionary learning using spectral-unmixing algorithms
were proposed. The experimental results showed that the proposed approaches are useful
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4. Hyperspectral superresolution, data fusion, and pansharpening

for the estimation of superresolution HSIs from locally low-rank HSIs and MSIs, even if
the actual spectral response is unknown and needs to be estimated from the data.
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5. Optimization algorithms

This chapter presents two results in the field of optimization that are yet to be published.
The first contribution is related to the concept of operator-weighted averaged operators,
and to the study of the asymptotic behavior of fixed-point iterations of these operators.
The second contribution is a study of the connections between ADMM and a second-order
primal–dual method when solving `2+regularizer minimization problems.
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5.1. Introduction

This chapter is divided into two parts. In the first one, we introduce a certain type of
operator, and establish some connections with it and a number of algorithms, in particular
the ones used to solve minimization problems with sparsity-inducing regularizers. Many
of these methods are generic in the sense that they do not take into account the sparsity of
the solution in any particular way. However, some of them, such as semismooth Newton
methods, are able to take advantage of this sparsity to accelerate their convergence. In
this chapter, we show how to extend these algorithms in different directions, and we
study the convergence of the resulting algorithms in real Hilbert spaces. We base our
analysis on a variation on the well-known Krasnosel’skĭı–Mann scheme and show that
these methods are a particular case of this variation. Some alternative interpretations
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of these methods, as well as some applications, are also discussed. In particular, the
methods are experimentally shown to be able to achieve substantially faster convergence
rates than standard first- and second-order methods when solving a simple problem.
In the second part, we establish some connections between ADMM and a second-order

primal–dual method. ADMM has been widely used in recent years to solve large-scale
problems in signal processing and machine learning applications. This is due to its ability
to find solutions to convex minimization problems in a computationally efficient way in
many situations of practical interest. ADMM is a first-order method, and finds solutions
at a linear convergence rate under certain assumptions. However, when using ADMM
to solve `2+regularizer minimization problems, one is able to achieve faster rates, in
practice, than when using first-order methods such as the forward–backward one. In
the literature, this was suggested to be a consequence of implicitly using second-order
information about the function being minimized, in a way akin to the use of this type
of information in second-order methods such as proximal Newton ones. In this chapter,
we substantiate this suggestion by showing that ADMM shares some similarities with a
particular instance of a variable-metric primal–dual method, under certain conditions,
when used to solve `2+regularizer minimization problems.
In the interest of readability, we defer the proofs of all the propositions, theorems, and

corollaries of this chapter to Section 5.4.

5.1.1. Outline and contributions

The structure of this chapter is as follows. Section 5.2 corresponds to the first contri-
bution (operator-weighted averaged operators). We define operator-weighted averaged
operators, and show that they have a contractive property. In Subsection 5.2.1, we
study the asymptotic behavior of fixed-point iterations of these operators, and prove the
convergence of these iterations under certain conditions. We base ourselves on the fact
that they produce a sequence that is Fejér monotone (specifically, variable-metric Fejér
monotone). In Subsection 5.2.2, we show how operator-weighted averaged operators can
be used to extend an existing algorithm from the literature—a variable-metric forward–
backward method, which itself encompasses many other algorithms—, and we prove its
convergence under certain conditions. In Subsection 5.2.3, we show how this extension
can be used to solve a primal–dual problem first studied by Combettes and Pesquet [122],
which generalizes many problems (most notably convex ones). In Subsection 5.2.4, we
discuss a simple application of the proposed method to solve an inverse problem, and
discuss a framework that incorporates existing active-set methods in order to solve `2-
regularized minimization problems. We prove its convergence under certain conditions
by showing that this framework is a particular instance of an algorithm discussed in a
previous subsection. Section 5.3 corresponds to the second contribution (ADMM as a
second-order method). Subsection 5.3.1 discuss a variable-metric primal–dual method.
Subsection 5.3.2 details how this method and ADMM can be used to solve `2+regularizer
minimization problems, and compares and contrasts both methods. Subsection 5.3.3 pro-
vides some experimental results comparing the two methods. Section 5.4 provides the
proofs of all the propositions, theorems, and corollaries of this chapter. Section 5.5
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concludes.
Although the idea behind operator-weighted averaged operators is quite natural, it has

not, to the best of our knowledge, been formalized before. The different interpretations
given in this chapter seem to be new. The asymptotic analysis of the fixed-point iterations
of these operators seems to be new; it is based on some previous results on the convergence
of variable-metric quasi-Fejér sequences [123, 81]. The framework that incorporates ex-
isting active-set methods also seems to be new. The variable-metric primal–dual method
introduced in Subsection 5.3.1 appears to be new, as well as the comparison between it
and ADMM when used to solve `2+regularizer minimization problems.

5.2. Operator-weighted averaged operators

As discussed in Section 2.5, it is possible to analyze many algorithms used to solve convex
optimization problems through the study of monotone-operator theory. In fact, all the
algorithms discussed in Chapter 2, except for semismooth Newton methods, can be seen
as instances of the following scheme:

xk+1 = Tλkx
k , xk + λk

(
Rxk − xk

)
, (5.1)

which is known as the Krasnosel’skĭı–Mann method (cf. Algorithm 11, page 36), and
where R is a nonexpansive operator. For example, one can recover the forward–backward
(cf. Algorithm 12, page 36) and the Douglas–Rachford methods (cf. Algorithm 13,
page 37) by making R = JτA ◦ (Id− τC) and R = (2JτA− Id) ◦ (2JτB − Id), respectively,
where A and B are maximally monotone operators and C is a cocoercive operator. Note
that, for every k, the operators Tλk are known as averaged operators [cf. Eq.(2.42)] if
λk ∈ ]0, 1[.
In this section, we propose and discuss an alternative scheme to Eq. (5.1),

xk+1 = TΛkx
k , xk + Λk

(
Rxk − xk

)
(5.2)

where, for every k, Λk is an operator in X such that Id � Λk � 0. We call the operators
TΛk , operator-weighted averaged operators. It is clear that, if Λ = λId, we recover the
original scheme [cf. Eq. (5.1)]. As before, we can consider that R = JτA ◦ (Id − τC) or
that R = (2JτA− Id) ◦ (2JτB − Id) to build extensions of the forward–backward and the
Douglas–Rachford methods, respectively.
Eq. (5.2) can by interpreted in different ways. For example, it can be seen as a

left-preconditioning scheme. Note that, under the convergence conditions discussed in
Section 2.3, if we iterate Eq. (5.1), we can solve the problem of finding a fixed point of
R, i.e.,

find x ∈ X such that Rx = x. (5.3)

We can also consider problems equivalent to this one, in the sense that they share the
same set of solutions, but that may be more convenient to solve. For example, we can
consider a preconditioned version of this problem, i.e.,

find x ∈ X such that ΛRx = Λx, (5.4)

77



5. Optimization algorithms

where Λ is an operator in X such that Λ � 0. Since, by iterating Eq. (5.1), we can
solve Problem (5.3), a similar reasoning suggests that, by iterating Eq. (5.2), we can
solve Problem (5.4). These iterations are very similar to some of the ones used to solve
linear systems. Consider the system Ax = b. This system can be solved for x, under
certain conditions, by iterating xk+1 = xk+λk

(
Axk − b

)
. This iteration is known in the

numerical-analysis community as the Richardson iteration, and is a particular instance of
a first-order linear nonstationary iterative method (examples of others are the Jacobi and
the Gauss–Seidel iterations) [124, 125]. Sometimes, for computational reasons (e.g., if A
is deemed to be too ill conditioned), it is convenient to consider a preconditioned version
of the linear system: PAx = Pb, where P is an invertible matrix. The corresponding
preconditioned version of the Richardson iteration is xk+1 = xk + λkP

(
Axk − b

)
. Note

that the preconditioner Λ is different from the preconditioner U discussed in Section 2.5,
and both can be used simultaneously. In Section 5.2.2, we consider a version of the
forward–backward method that makes use of the two preconditioners. The core iteration
of that version of the method is xk+1 = xk + Λk

(
JτUAx

k ◦ (xk − τUCxk)− xk
)
.

Eq. (5.1) can also be seen as the iteration of a line-search method if one considers
λk
(
Rxk − xk

)
to be a step in the direction of the fixed-point residual

(
Rxk − xk

)
with

step-length parameter λk.1 The term Λk
(
Rxk − xk

)
in Eq. (5.2) can also be seen as in-

dicating a search direction by noting the similarities with second-order line-search meth-
ods. Furthermore, by incorporating second-order information about

(
Rxk − xk

)
in Λk,

we recover a Newton-like method. In fact, as we discuss next, the semismooth Newton
methods discussed in Section 2.4 can be seen as a particular case of Eq. (5.2), for a given
choice of the operators Λk and R.
We can establish parallels between the proposed scheme and some algorithms. One of

these are semismooth Newton methods. Consider Eq. (2.35). This equation can be seen
as an instance of Eq. (5.2) if one makes Λk = [V (xk)]−1 and R = Jτ∂g ◦ (Id − τ∇f),
where V (xk) is defined as in Eq. (2.36), f = ‖y −H · ‖2, and g = µ‖ · ‖1. Note that
the nonexpansive operator R given here takes the same form as the operator R in the
forward–backward method (cf. Algorithms 4 and 12, pages 27 and 36, respectively).
This operator is slantly differentiable (see Section 2.4) and the operator Λk satisfies the
conditions enunciated in Line 1 of Algorithm 10. For this choice of operators, Eq. (5.2)
can be seen as a Newton-like iteration. Other active-set methods [126, 127, 128, 129] can
also be considered as particular examples of the proposed scheme. In those cases, the
operator Λk takes a form different from the one of Eq. (2.36). One could also consider
generalizations of second-order differentiability other than slant differentiability. An
example of such a generalization is epi-differentiabililty [130, Chapter 13]. This notion
was used in the work of Stella et al. [131] to design quasi-Newton versions of the forward–
backward method. This generalization corresponds to yet another form of the operator
Λk. In this section, we consider that Id � Λk, for every k. The semismooth Newton
methods discussed in Section 2.4 do not impose such a restriction.
We can also establish parallels between the proposed scheme and coordinate-descent

1Compare with Eq. (2.5). This idea has been explored by Giselsson et al. [54], where the authors
considered steps with length parameters λk ≥ 1.

78



5.2. Operator-weighted averaged operators

methods. Consider the case where, for every k, Λk is a diagonal operator whose entries
are either 0 or 1. These operators can then be used to select a particular coordinate—or
block of coordinates—of x. Consider now that {Λk} is a sequence of such operators and
that the choice of which coordinates are 0 or 1 for every Λk obeys a given strategy. By
iterating Eq. (5.2), we recover a method that uses the same strategy used in the so-called
coordinate-descent methods. For example, if R = Id− τ∇f , we recover the coordinate-
gradient-descent method.2 One can follow different selection strategies by an appropriate
choice of operator Λk. Since the operator Λk is binary, we have Id � Λk � 0 and not
Id � Λk � 0, as we assumed initially. Algorithms resulting from this choice of Λk have
been studied elsewhere (see, e.g., Combettes and Pesquet [134]) and are not analyzed in
the remainder of this section.

5.2.1. An extension of the Krasnosel’skĭı–Mann method

In this subsection, we define operator-weighted averaged operators, and prove that they
have a contractive property. We then study the asymptotic behavior of fixed-point it-
erations of these operators. These iterations can be seen as an extension of the Kras-
nosel’skĭı–Mann method.
The following definition extends the notion of averaged operators, which is given by

Eq. (2.42).

Definition 5.2.1 (Operator-weighted averaged operators). Let D be a nonempty subset
of X , let ε ∈ ]0, 1[, and let Λ be an operator in X such that

µId � Λ � αId, where µ, α ∈ [ε, 1− ε]. (5.5)

We say that an operator TΛ : D → X is an operator-weighted averaged operator if there
exists a nonexpansive operator R : D → X such that

TΛ , (Id− Λ) + ΛR. (5.6)

The following proposition establishes a contractive property that is similar to the one
of averaged operators [cf. Eq. (2.43)].

Proposition 5.2.2. Let D be a nonempty subset of X , let ε ∈ ]0, 1[, let Λ be an operator
in X satisfying (5.5), let R : D → X be a nonexpansive operator, and let TΛ : D → X

2The iterations of the coordinate-gradient-descent method are very similar to the ones of the gradient-
descent method (cf. Algorithm 1, page 21). The difference is that the update in xk+1 is made for one
coordinate while the others are kept fixed. For every k, the update is given by

xk+1 = xk − τ [∇f(xk)]ikeik ,

where ik is a given coordinate and ei is a binary vector whose components are zero, except for the i-th
one.
For more details on coordinate- and block-coordinate-descent methods, see, e.g., Wright [132] and

Shi et al. [133].
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be an operator as defined in Eq. (5.6). Then the operator TΛ is µ-averaged in the metric
induced by Λ−1. In other words, TΛ verifies

‖TΛx− TΛy‖2Λ−1 ≤ ‖x− y‖2Λ−1

− 1− µ
µ
‖(Id− TΛ)x− (Id− TΛ) y‖2Λ−1 , ∀x ∈ D, ∀y ∈ D.

Proof. We defer all proofs to Section 5.4.

Remark 5.2.3. By making Λ = λId with λ = ]0, 1[, we recover the standard definition
of averaged operators. In other words, TλId is λ-averaged. Naturally, we also recover
a contractive property of averaged operators [cf. Eq. (2.43)] (note that, in this case,
α = µ = λ).
Consider the following algorithm, which is an extension of the Krasnosel’skĭı–Mann

method (cf. Algorithm 11, page 36).

Algorithm 17: Fixed-point iterations of TΛk .
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose Id � Λk � 0;
5 xk+1 ← TΛkx

k = xk + Λk
(
Rxk − xk

)
;

6 k ← k + 1;
7 end

The following theorem establishes some convergence properties of this algorithm.

Theorem 5.2.4. Let D be a nonempty closed convex subset of X , let ε ∈ ]0, 1[, let{
ηk
}
∈ `1+(N), let

{
Λk
}
be a sequence of operators in X such that, for all k ∈ N,

µkId � Λk � αkId,
µk, αk ∈ [ε, 1− ε](
1 + ηk

)
Λk+1 � Λk,

(5.7)

and let R : D → D be a nonexpansive operator such that Fix R 6= ∅.
Let x0 ∈ D and let

{
xk
}
be a sequence generated by Algorithm 17. Then the following

hold:

1) Let x∗ ∈ D. Then, x∗ ∈ Fix R if and only if x∗ ∈ Fix TΛk .

2)
{
xk
}
is Fejér monotone with respect to Fix R relative to

{(
Λk
)−1
}
.3

3) The sequence
{
Rxk − xk

}
converges strongly to 0.

4)
{
xk
}
converges weakly to a point in Fix R.

Proof. We defer all proofs to Section 5.4.
3See Footnote 6 of Chapter 2 for a definition.
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5.2.2. An extension of a variable-metric forward–backward method

In this subsection, we show how operator-weighted averaged operators can be used to
extend a variable-metric forward–backward method proposed by Combettes and Vũ [81].
Consider Algorithm 18 (which is an extension of Algorithm 12) to solve Problem (2.47).

In what follows,
{
Uk
}
,
{

Λk
}
are sequences of bounded linear operators, and

{
ak
}
,
{
bk
}

are absolutely summable sequences that can be used to model errors.

Algorithm 18: An extension of the variable-metric forward–backward algorithm.
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose γk > 0, Uk � 0, and Id � Λk � 0;
5 yk ← xk − γkUk

(
Cxk + bk

)
;

6 xk+1 ← xk + Λk
(
JγkUkAy

k + ak − xk
)
;

7 k ← k + 1;
8 end

The following theorem establishes some convergence properties of this algorithm.

Theorem 5.2.5. Let A : X → 2X be a maximally monotone operator, let β ∈ ]0,+∞[,
and let C be a β-cocoercive operator.
Let

{
Uk
}
be a sequence of operators in X such that, for all k ∈ N,{

µU Id � Uk � αU Id,
µU , αU ∈ ]0,+∞[,

(5.8)

let ε ∈ ]0,min{1, 2β/(µU + 1)}[, let
{

Λk
}
be a sequence of operators in X such that, for

all k, 
ΛkUk = UkΛk,

µId � Λk � αId,
µ, α ∈ [ε, 1],

(5.9)

let
{
ηk
}
∈ `1+(N), and let

(1 + ηk)Λk+1Uk+1 � ΛkUk. (5.10)

Let
{
γk
}
be a sequence in [ε, (2β − ε)/µU ] and let

{
ak
}
,
{
bk
}
∈ `1(N).

Suppose that Z = zer (A+C) 6= ∅. Let
{
xk
}
be a sequence generated by Algorithm 18.

Then the following hold:

1)
{
xk
}
is quasi-Fejér monotone4 with respect to Z relative to

{(
ΛkUk

)−1
}
.

2)
{
xk
}
converges weakly to a point in Z.

4See Footnote 6 of Chapter 2 for a definition.
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Proof. We defer all proofs to Section 5.4.

Remark 5.2.6. (Variable-metric forward–backward method) By making Λk = λkId, ∀k,
where

{
λk
}
is a sequence in [ε, 1], we recover the algorithm analyzed in [81, Theorem

4.1].

Remark 5.2.7. The assumption that, for every k, Uk and Λk commute, i.e., ΛkUk −
UkΛk = 0, may seem to be severe. However, take into account that existing algorithms
consider one of these operators to be the identity operator: in semismooth Newton
methods, Uk = Id, ∀k and Λk contains some second-order information about R; in
variable-metric forward–backward methods, Λk = Id, ∀k. In a sense, the algorithm
proposed here unifies these two approaches and allows a more flexible choice of operators.

In what follows, we give an example of the application of Algorithm 18 to solve convex
problems of the form of Problem (2.15). Consider the following algorithm

Algorithm 19: An application of Algorithm 18 to solve convex problems.
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose γk > 0, Uk � 0, and Id � Λk � 0;
5 yk ← xk − γkUk

(
∇g(xk) + bk

)
;

6 xk+1 ← xk + Λk
(

prox
(Uk)

−1

γkf
yk + ak − xk

)
;

7 k ← k + 1;
8 end

The following corollary establishes some convergence properties of Algorithm 19.

Corollary 5.2.8. Let f ∈ Γ0(X ), let β ∈ ]0,+∞[, and let g : X → R be convex and
differentiable with a 1/β-Lipschitzian gradient. Let ε ∈ ]0,min{1, 2β/(µU + 1)}[, let{
ηk
}
∈ `1+(N), and let

{
Uk
}
and

{
Λk
}
be sequences of operators in X satisfying (5.8),

(5.9) and (5.10) for all k ∈ N. Let
{
γk
}

be a sequence in [ε, (2β − ε)/µU ], and let{
ak
}
,
{
bk
}
∈ `1(N).

Suppose that Z = Argmin (f + g) 6= ∅. Let
{
xk
}

be a sequence generated by Algo-
rithm 19. Then the following hold:

1)
{
xk
}
is quasi-Fejér monotone with respect to Z relative to

{(
ΛkUk

)−1
}
.

2)
{
xk
}
converges weakly to a point in Z.

Proof. We defer all proofs to Section 5.4.

Remark 5.2.9. When g is a sparsity-inducing regularizer and the operator Λk satisfies the
conditions enunciated in Line 1 of Algorithm 10, for every k, we recover the semismooth
Newton methods discussed in Section 2.4.
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5.2. Operator-weighted averaged operators

5.2.3. Primal-dual composite monotone inclusions

In this subsection, we present an algorithm that solves a primal–dual problem, which
encapsulates many other problem formulations [122, 68, 81]. This problem generalizes the
ones discussed in Section 2.5, namely the inclusions 0 ∈ Ax+Bx and 0 ∈ Ax+Cx, where
A and B are maximally monotone operators, and C is a cocoercive operator, and also
generalizes others (see Vũ [68] for more examples). Since this problem is quite general,
by devising an algorithm to solve it, we effectively tackle a large number of problems
simultaneously. The problem involves the parallel sum of two set-valued operators, which
is an operation that can be seen as a regularization of one operator by the other. When the
operators involved are subdifferentials of proper lower semi-continuous convex functions,
it corresponds to the infimal convolution.5

Let A : X → 2X be a maximally monotone operator, let µ ∈ ]0,+∞[, let C : X → X be
µ-cocoercive, and let z ∈ X . Let N be a strictly positive integer; for every j ∈ {1, . . . , N},
let rj ∈ Vj , let Bj : Vj → 2Vj be maximally monotone, let νj ∈ ]0,+∞[, let Ej : Vj → 2Vj

be maximally monotone and νj-strongly monotone, let Lj ∈ B(X ,Vj) such that Lj 6= 0,
and let ωj be real numbers in ]0, 1] such that

∑N
j=1 ωj = 1. The primal–dual problem is

as follows: to solve the primal inclusion

find x ∈ X such that z ∈ Ax+
N∑
j=1

ωjL
∗
j ((Bj �Ej) (Ljx− rj)) + Cx, (5.11)

together with the dual inclusion

find d1 ∈ V1, . . . , dN ∈ VN such that ∃x ∈ X and

{
z −

∑N
j=1 ωjL

∗
jdj ∈ Ax+ Cx,

dj ∈ (Bj �Ej) (Ljx− rj) , ∀j ∈ {1, . . . , N}.
(5.12)

The sets of solutions to (5.11) and (5.12) are denoted by P and D, respectively.

Consider Algorithm 20, which is an extension of Algorithm 18, to solve this primal–dual
problem. In what follows, for all j,

{
Uk
}
,
{

Λk
}
,
{
Ukj

}
,
{

Λkj

}
are sequences of bounded

linear operators, and
{
ak
}
,
{
bkj

}
,
{
ck
}
,
{
ekj

}
are absolutely summable sequences that

can be used to model errors.

5See Footnote 3 of Chapter 2 for a brief discussion on the connections between the infimal convolution
and regularization.
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Algorithm 20: An extension of the variable-metric primal–dual Algorithm.
1 Choose x0 ∈ X ;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 for j ← 1, . . . , N do
5 Choose Ukj � 0 and Id � Λkj � 0;

6 qkj ← JUkj B
−1
j

(
dkj + Ukj

(
Ljx

k − E−1
j dkj − ekj − rj

))
+ bkj ;

7 ykj ← 2qkj − dkj ;
8 dk+1

j ← dkj + Λkj

(
qkj − dkj

)
;

9 end
10 Choose Uk � 0, and Id � Λk � 0;

11 pk ← JUkA

(
xk − Uk

(∑N
j=1 ωjL

∗
jy
k
j + Cxk + ck − z

))
+ ak;

12 xk+1 ← xk + Λk
(
pk − xk

)
;

13 k ← k + 1;
14 end

The following corollary establishes some convergence properties of Algorithm 20.

Corollary 5.2.10. Suppose that

z ∈ ran

A+
N∑
j=1

ωjL
∗
j ((Bj �Ej) (Lj · −rj)) + C

 (5.13)

and set
β , min{µ, ν1, . . . , νN}. (5.14)

Let
{
Uk
}
be a sequence of operators in X such that, for all k ∈ N,{

µU Id � Uk � αU Id,
µU , αU ∈ ]0,+∞[,

(5.15)

let ε ∈ ]0,min{1, β}[, let
{

Λk
}
be a sequence of operators in X such that, for all k,

ΛkUk = UkΛk,

µId � Λk � αId,
µ, α ∈ [ε, 1],

(5.16)

and let
Λk+1Uk+1 � ΛkUk. (5.17)

Additionally, for every j ∈ {1, . . . , N}, let
{
Ukj

}
be a sequence of operators in Vj such

that, for all k ∈ N, {
µU Id � Ukj � αU Id,
µU , αU ∈ ]0,+∞[,

(5.18)
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let
{

Λkj

}
be a sequence of operators in Vj such that, for all k,

ΛkjU
k
j = Ukj Λkj ,

µId � Λkj � αId,
µ, α ∈ [ε, 1],

(5.19)

and let
Λk+1
j Uk+1

j � ΛkjU
k
j . (5.20)

Let, for all j,
{
ak
}
,
{
bk
}
,
{
ckj

}
,
{
ekj

}
∈ `1(N).

For every k, set

δk ,

 N∑
j=1

ωj

∥∥∥√Ukj Lj√Uk∥∥∥2

− 1
2

− 1 (5.21)

and suppose that

ξk ,
δk

(1 + δk)µU
≥ 1

2β − ε
. (5.22)

Let
{
xk
}
be a sequence generated by Algorithm 20. Then the following hold:

1) xk converges weakly to a point in P .

2)
(
dk1, . . . , d

k
N

)
converges weakly to a point in D.

Proof. We defer all proofs to Section 5.4.

Convex minimization problems

The previously described primal–dual problem formulation can be used to formulate
convex primal–dual minimization problems [122, 68, 81]. Let g ∈ Γ0(X ), let µ ∈ ]0,+∞[,
let f : X → R be convex and differentiable with a µ−1-Lipschitzian gradient, and let
z ∈ X . Let N be a strictly positive integer; for every j ∈ {1, . . . , N}, let rj ∈ Vj , let
hj ∈ Γ0(Vj), let νj ∈ ]0,+∞[, let lj ∈ Γ0(Vj) be νj-strongly convex, let Lj ∈ B(X ,Vj)
such that Lj 6= 0, and let ωj be real numbers in ]0, 1] such that

∑N
j=1 ωj = 1. In

Problems (5.11) and (5.12), making, for every j, A = ∂g, C = ∇µ, Bj = ∂hj , and
Ej = ∂lj , yields the following primal problem [122, Theorem 4.2],

minimize
x∈X

g(x) +
N∑
j=1

ωj (hj ?inf lj) (Ljx− rj) + f(x)− 〈x, z〉 , (5.23)

together with its corresponding dual problem,

minimize
d1∈V1,··· ,dj∈Vj

(g∗ ?inf h
∗)

z − N∑
j=1

ωjL
∗
jdj

+

N∑
j=1

ωj
(
h∗j (dj) + l∗j (dj) + 〈dj , rj〉

)
.

(5.24)
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The sets of solutions to (5.23) and (5.24) are denoted by P and D, respectively. The
different optimization problems discussed in Chapter 2 are special cases of this primal–
dual problem [122, Example 1.6].
Consider Algorithm 21 (which is an instance of Algorithm 20) to solve this primal–dual

problem. In what follows, for all j,
{
Uk
}
,
{

Λk
}
,
{
Ukj

}
,
{

Λkj

}
are sequences of bounded

linear operators, and
{
ak
}
,
{
bkj

}
,
{
ck
}
,
{
ekj

}
are absolutely summable sequences that

can be used to model errors.

Algorithm 21: An application of Algorithm 20 to solve convex problems.
1 Choose x0 ∈ X and d0

1 ∈ V1, · · · , d0
j ∈ Vj ;

2 k ← 1;
3 while stopping criterion is not satisfied do
4 for j = 1, . . . , N do
5 Choose Ukj � 0, and Id � Λkj � 0;

6 qkj = prox
(Ukj )

−1

h∗j

(
dkj + Ukj

(
Ljx

k −∇l∗j (dk)− ekj − rj
))

+ bkj ;

7 ykj = 2qkj − dkj ;
8 dk+1

j = dkj + Λkj

(
qkj − dkj

)
;

9 end
10 Choose Uk � 0, and Id � Λk � 0;

11 pk = prox
(Uk)

−1

g

(
xk − Uk

(∑N
j=1 ωjL

∗
jy
k
j +∇f(xk) + ck − z

))
+ ak;

12 xk+1 = xk + Λk
(
pk − xk

)
;

13 k ← k + 1;
14 end

The following corollary establishes some convergence properties of Algorithm 21.

Corollary 5.2.11. Suppose that

z ∈ ran

∂g +
N∑
j=1

ωjL
∗
j (∂hj ?inf ∂lj) (Lj · −rj) +∇f

 (5.25)

and set β = min{µ, ν1, . . . , νN}. Let ε ∈ ]0,min{1, β}[ and let, for all j,
{
Uk
}
,
{

Λk
}
,{

Ukj

}
, and

{
Λkj

}
be sequences of operators satisfying (5.15)-(5.20) for all k ∈ N. Let,

for all j,
{
ak
}
,
{
bk
}
,
{
ckj

}
,
{
ekj

}
∈ `1(N). For every k ∈ N, set (5.21) and suppose

that (5.22) holds. Let
{
xk
}
be a sequence generated by Algorithm 21. Then the following

hold:

1) xk converges weakly to a point in P .

2)
(
dk1, . . . , d

k
N

)
converges weakly to a point in D.
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Proof. We defer all proofs to Section 5.4.

Remark 5.2.12. By making, for every k and for every j, z = 0, rj = 0, Uk = τ Id (where
τ > 0), Ukj = σId (where σ > 0), Λk = θkId (where

{
θk
}

is a sequence of positive
parameters), and

lj : y →

{
0 if y = 0,

+∞ otherwise,
(5.26)

we recover [67, Algorithm 5.2].

5.2.4. Applications and experiments

In this subsection, we discuss a simple problem that can be solved via Algorithm 21, and
a framework that can be used to adapt existing semismooth Newton and other active-set
methods to solve `2-regularized minimization problems with more than one regularizer
and/or with constraints.

A simple problem

Consider the problem

minimize
x∈Rn

‖b−Hx‖2 + µ‖x‖1 + δ[c,d]n (x) , (5.27)

where b ∈ Rn, c ∈ R, d ∈ R, µ > 0, δ[c,d]n (·) is defined as in (1.14), and

H ∈ Rn×n : H =
1

N


1 0 · · · 0
1 1 · · · 0
...

. . . 0
1 1 · · · 1

 . (5.28)

Griesse and Lorenz studied this problem in the context of inverse integration [79,
Section 4.1] but did not consider the term δ[c,d]n (x). This problem can be solved via
Algorithm 21 by letting γ > 0, τ > 0, by making N = 1,X = Rn,V = Rn, L1 =
In, r1 = 0, z = 0, and ∀k, Uk1 = γIn, U

k = τIn, e
k
1 = 0, bk1 = 0,Λk1 = In, c

k = 0, ak = 0,
f = ‖b − H · ‖2, g = µ‖ · ‖1, h = δ[c,d]n (·) f , if (5.26) is satisfied for j = 1, and by
considering that Λk is defined similarly to Eqs. (2.35-2.38).
We recover a similar example to the one studied by Griesse and Lorenz: let the original

x be as in Fig. 5.1a and the observed b be as in Fig. 5.1b, where Gaussian noise with
SNR of 30 dB was added to Hx. Set µ = 3 × 10−3, c = −80 and d = 52. We com-
pared Algorithm 21 (denoted in what follows as Proposed) with Algorithm 7 (denoted
by ADMM) and with Algorithm 8 (denoted by CM) to solve the problem under con-
sideration.6 We manually tuned the different parameters of the three methods in order

6CM is a first-order method, since it only uses first-order information about the objective function of
Problem (5.27). ADMM is, by definition, a first-order method, although, as discussed in Section 5.3,
it behaves very similarly to a second-order method when used to solve `2-regularized minimization
problems.
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Figure 5.1.: Original x (a), observed b (b), and estimated x (c).

to achieve the fastest convergence results in practice. We arbitrarily chose the result of
ADMM after 107 iterations as representative of the solution given by the three methods.
Fig. 5.1c shows the results of the Proposed method and Fig. 5.2 illustrates the behavior
of the three methods by showing the RMSE as a function of time, between the estimates
of each method and the representative solution. The experiments were performed using
MATLAB on an Intel Core i7 CPU running at 3.20 GHz, with 32 GB of RAM.
In this example, we did not enforce in any particular way the assumptions on Λ,

i.e., assumptions (5.16) and (5.17), but we verified in practice that they were satisfied.
However, in more complex examples, it would be necessary to devise a strategy that
generates a sequence

{
Λk
}
satisfying these assumptions. This is akin to the necessity of

devising globalization strategies in other Newton-like methods [39, Chapter 7].
It is clear that the proposed method has a much faster convergence than either CM or

ADMM. In practice, this improvement in convergence is similar to the one observed in
the methods discussed in Section 2.4. This is due to the fact that this method requires
one to compute the solution of a linear system with a much lower dimensionality than
the system in ADMM. In general, the sparser the solution is, the faster the method is
as well. In order to benefit from this property, we must be able to efficiently solve the
lower-dimensional system, in the sense that we can pick at will which coordinates of the
system are active. This may not always be possible: for example, in problems that involve
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Figure 5.2.: RMSE, as a function of time, between the estimates of each iteration and
the representative solution, for the three methods.

computations with the FFT of a signal, we usually have only modest improvements in
speed if we wish to compute only selected elements of the FFT.7

Plug-and-play methods

Recently, a number of works have been published in the literature that explore the idea
of substituting one of the steps of a given algorithm by another algorithm. For example,
one can use the plug-and-play ADMM to solve `2-regularized minimization problems.
In this method, the user substitutes one of the steps of the method by a denoising
algorithm [99, 136]. We explore a similar idea by considering the use of a semismooth
Newton or other active-set method to replace one of the steps of ADMM. While the goal
with the use of denoising algorithms is to improve the SNR of the estimates, the goal
here is improve the convergence rate.

7See http://www.fftw.org/pruned.html for details. However, for large-scale problems and for highly-
sparse signals, methods known as sparse FFTs [135] may be useful (see https://groups.csail.mit.
edu/netmit/sFFT/ for details).
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Consider problems of the form

minimize
x∈Rn

1

2
‖Hx− b‖2 + g(x) + h(x), (5.29)

where g(x) ∈ Γ0(Rn) is a sparsity-inducing regularizer and h(x) ∈ Γ0(Rn). Examples of
such functions are g(x) = µ ‖x‖1 and h(x) = δ[c,d]n (x). Existing semismooth Newton
methods do not consider the existence of a separate term h, and, in general, are not able
to solve this problem efficiently, since that would require the computation of prox (g+h).
In what follows, we discuss an algorithm that can be used to solve Problem (5.29), that
does not require that computation, and that allows the use of an existing semismooth
Newton method in a plug-and-play fashion. Problem (5.29) can be rewritten as

minimize
x∈Rn,v∈Rn

1

2
‖Hx− b‖2 + g(x) + h(v)

subject to x = v,

(5.30)

which, in turn, has the augmented Lagrangian

L(x,v,d) =
1

2
‖Hx− b‖2 + g(x) + h(v) +

γ

2
‖d + x− v‖2 , (5.31)

where d ∈ Rn and γ > 0. Cycling through x, v, and d yields ADMM:

xk+1 ∈ arg min
x∈Rn

g(x) +
1

2

∥∥∥∥[ H√
γIn

]
x−

[
b√

γ(vk − dk)

]∥∥∥∥2

, (5.32)

vk+1 ∈ arg min
v∈Rn

h(v) +
γ

2

∥∥∥dk + xk − v
∥∥∥2
, (5.33)

dk+1 = dk + xk+1 − vk+1. (5.34)

Problem (5.32) can be solved through one of the existing active-set methods that tackle
problems with sparsity-inducing regularizers [126, 137, 138, 139, 127, 128, 129, 140]. With
this in mind, and by setting f(x) = 1

2 ‖Hx− b‖2, we propose the following algorithm:

Algorithm 22: Plug-and-play ADMM with a semismooth Newton method.
1 Choose x0 ∈ Rn, v0 ∈ Rn, d0 ∈ Rn, τ > 0;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 pk = prox τg

(
xk − τ

(
∇f(xk) + γ

(
xk − vk + dk

)))
;

5 xk+1 = xk + Λk
(
pk − xk

)
;

6 vk+1 = prox h
γ

(
xk+1 + dk

)
;

7 dk+1 = dk +
(
xk+1 − vk+1

)
;

8 k ← k + 1;
9 end
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Lines 4 and 5 of Algorithm 22 take a form similar to Algorithm 19 and can, in principle,
be replaced by any of the existing active-set methods (see Remark 5.2.9). In the following
corollary, we discuss some of the convergence guarantees of this algorithm by showing
that it is an instance of Algorithm 21. Note that the use of any active-set method may
violate the convergence conditions given here.

Corollary 5.2.13. Suppose that

0 ∈ ran (∂g + ∂h+∇f) . (5.35)

Set β = ‖H∗H‖ and let ε ∈ ]0,min{1, β}[. For every k ∈ N, set δk = 1
τγ − 1 and suppose

that (5.22) holds. Let
{

Λk
}
be sequences of operators satisfying

{
µId � Λk � αId,
µ, α ∈ [ε, 1],

(5.36)

and let
{
xk
}
be a sequence generated by Algorithm 22. Then xk converges weakly to a

solution of Problem (5.29).

Proof. We defer all proofs to Section 5.4.

5.3. Connections between ADMM and a second-order
primal–dual algorithm when solving `2+regularizer
minimization problems

Many problems in signal processing and machine learning can be addressed by solving a
composite minimization problem of the form

minimize
x∈Rn

f(x) + ψ(Dx), (5.37)

where f : Γ(Rn) is a smooth function, ψ : Γ(Rm) is a possibly non-smooth function, and
D ∈ Rm×n.
ADMM can be used to solve problems of the form of Problem (5.37), as is detailed in

Subsection 2.3.1. In that subsection, we used the so-called “scaled” version of ADMM.
The difference between the scaled and non-scaled versions is the use of the scaled dual
variable instead of the standard dual variable. The non-scaled version of ADMM to solve
Problem (5.37) is given by
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Algorithm 23: ADMM.
1 Choose u0 ∈ Rm, d0 ∈ Rm;
2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose γk > 0;
5 xk+1 ← arg min

x
Lγk(x,uk,dk);

6 uk+1 ← arg min
u

Lγk(xk+1,u,dk);

7 dk+1 ← dk + γ
(
Dxk+1 − uk+1

)
;

8 k ← k + 1;
9 end

where Lγ(x,u,d) is

Lγ(x,u,d) , f(x) + ψ(u) +
γ

2

∥∥∥∥Dx− u +
d

γ

∥∥∥∥2

(5.38)

and γ > 0 is a penalization parameter. In this version, d ∈ Rm is the non-scaled version
of the dual variable.

It can be shown that, in general, ADMM is able to find solutions at a sublinear
rate. Under certain assumptions on one of the functions (e.g., strong convexity and
smoothness) and on D (to be full rank), the rate is linear [66, 53]. In practice, however,
one often finds that ADMM is able to solve many problems of practical interest much
faster than other first-order methods. This raises the issue of whether ADMM actually
makes use of second-order information, at least in some situations. In what follows, we
investigate the similarity between ADMM and a variable-metric primal–dual method.

5.3.1. A variable-metric primal–dual method

Condat [67] proposed two different, albeit similar, primal–dual algorithms to solve com-
posite convex problems of the form of Problem (2.3). A variable-metric version of one
of them, Algorithm 9, was analyzed by Combettes and Vũ [81]. In this subsection, we
discuss a variable-metric version of the other one. To the best of our knowledge, the
convergence of this version has not been established in the literature, although it can be
proved by a simple variation on the proof devised by Combettes and Vũ. The algorithm
is very similar to Algorithm 9 and is given by
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5.3. Connections between ADMM and a second-order primal–dual algorithm

Algorithm 24: Forward-backward-based variable-metric primal–dual method (2).
1 Choose x0 ∈ Rn, d0

1 ∈ Rm1 , . . . , d0
N ∈ RmN ;

2 k ← 1;
3 while stopping criterion is not satisfied do
4 Choose λk > 0, Uk � 0;
5 for j ← 1, . . . , N do
6 Choose Uk

j � 0;

7 qkj ← prox
(Uk

j )
−1

h∗j

(
dkj + Uk

jDjx
k
)
;

8 dk+1
j ← dkj + λk

(
qkj − dkj

)
;

9 end

10 pk ← prox
(Uk)

−1

g

(
xk −Uk

(
∇f

(
xk
)

+
∑N

j=1 D∗j

(
2qkj − dkj

)))
;

11 xk+1 ← xk + λk
(
pk − xk

)
;

12 k ← k + 1;
13 end

The following proposition establishes some convergence properties of this algorithm.

Proposition 5.3.1. Suppose that

0 ∈ ran

∂g +
N∑
j=1

D∗j∂hjDj +∇f

 . (5.39)

Let f have a µ−1-Lipschitzian gradient, where µ ∈ ]0,+∞[, and let ε ∈ ]0,min{1, µ}[.
For every k ∈ N, let λk ∈ [ε, 1], set (5.21) and suppose that (5.22) holds. Let

{
xk
}
be a

sequence generated by Algorithm 24. Then the following hold:

1) xk converges weakly to a solution of Problem (2.3).

2)
(
dk1, . . . ,d

k
N

)
converges weakly to a solution of the dual of Problem (2.3).

Proof. We defer all proofs to Section 5.4.

Remark 5.3.2. If h : x → 0, Dj = 0, ∀j (where 0 is a matrix of zeros), λk = 1,∀k, and
Uk is the Hessian of f , we recover the proximal Newton method [69, 70], which has a
quadratic local convergence rate if f is strongly convex.

5.3.2. `2+regularizer minimization problems

Consider the case when the function f in Problem (5.37) is quadratic, i.e., is of the form
f(x) = 1

2x∗H∗Hx + g∗x + d, where H ∈ Rm×n, g ∈ Rn and d ∈ R. This case is very
frequent in optimization problems whose objective function is comprised of a quadratic
data-fitting term and a regularizer. Such optimization problems are sometimes called
`2+regularizer minimization problems. Since f is convex, ∇2f(x) = H∗H � 0.

93



5. Optimization algorithms

In what follows, we show how one can apply both ADMM and the variable-metric
primal-dual method (VMPD) to solve `2+regularizer minimization problems. We make
two assumptions: (a) that N (H) ∩ N (D) = {0}, where N (·) denotes the null space of
a matrix, and (b) that Problem (5.37) has a unique minimizer. When applying ADMM
(cf. Algorithm 23) to solve these problems, Line 5 becomes

(H∗H + γD∗D) xk+1 = D∗
(
γuk − dk

)
− g (5.40)

and Lines 5-7 can then be rewritten as

xk+1 = (H∗H + γD∗D)−1
(
D∗
(
γuk − dk

)
− g

)
, (5.41)

uk+1 = prox ψ
γ

(
Dxk+1 +

dk

γ

)
, (5.42)

dk+1 = dk + γ
(
Dxk+1 − uk+1

)
. (5.43)

Note that assumption (a), above, ensures that the matrix (H∗H + γD∗D) is nonsingular.
ADMM has been used to solve `2+regularizer problems with great success, which is partly
due to how fast this method is at finding solutions to such problems, in practice. This has
been hypothesized to be a consequence of the indirect use of second-order information
about Problem (5.37) in a way that resembles the use of this type of information in
proximal Newton methods [141]. In fact, as can be seen in Eq. (5.41), each iteration
of ADMM requires one to solve a linear system whose matrix contains the Hessian of
f , ∇2f(x) = H∗H. The matrix (H∗H + γD∗D) can be considered to be a modified
Hessian.
We now show how to apply VMPD to solve `2+regularizer minimization problems. It

is straightforward to show that the gradient of f is Lipschitz continuous with constant
λM (H∗H), where λM (A) denotes the maximum eigenvalue of matrix A. In order to
solve Problem (5.37) using Algorithm 24, we make g : x → 0 and N = 1. We also
make Uk = ∇2f(x) = H∗H, ∀k, which implies the use of the Hessian of f as a (fixed)
metric in Line 7. In this way, we are explicitly using second-order information about
the smooth term f , similarly to what is done in the case of proximal Newton methods
(see Section 2.3 for details). One may consider using as metric a regularized form of the
Hessian by making Uk = H∗H + εId, ∀k, where εk > 0 is an arbitrarily small scalar.
This is convenient if H∗H is indefinite.8 In what follows, we consider that Uk = ∇2f(x);
we discuss the regularized case at the end of this subsection. Additionally, we make
Uk

1 = ρId, ∀k, where ρ > 0. We consider the non-relaxed version of this algorithm by
making λk = 1, ∀k. Lines 5-11 of Algorithm 24 can be rewritten as

dk+1 = prox ρψ∗
(
dk + ρDxk

)
, (5.44)

xk+1 = xk − (H∗H)−1
(
H∗Hxk + g + D∗

(
2dk+1 − dk

))
, (5.45)

8If f is merely convex, H∗H is only guaranteed to be PSD. If f is strongly convex, H∗H is PD.
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5.3. Connections between ADMM and a second-order primal–dual algorithm

by noting that ∇f(x) = H∗Hx + g, and by making dk1 = dk and dk+1
1 = dk+1, ∀k, for

notational convenience.
In what follows, we study how both algorithms relate to each other. By using Moreau’s

decomposition (2.24), and introducing an auxiliary variable u ∈ Rm, we can rewrite
Eqs. (5.44, 5.45) as

uk+1 , prox ψ
ρ

(
dk

ρ
+ Dxk

)
, (5.46)

dk+1 = dk + ρDxk − ρuk+1, (5.47)

xk+1 = −(H∗H)−1
(
D∗
(

2dk+1 − dk
)

+ g
)
. (5.48)

By noting that 2dk+1 = dk+1 + dk+1, we can rewrite Eq. (5.48) as

xk+1 = −(H∗H)−1
(
ρD∗Dxk + D∗

(
dk+1 − ρuk+1

)
+ g

)
. (5.49)

Given this, note that we can rewrite the loop described by Eqs. (5.46-5.48) as

xk = (H∗H)−1
(
−ρD∗Dxk−1 + D∗

(
ρuk − dk

)
− g

)
, (5.50)

uk+1 = prox ψ
ρ

(
Dxk +

dk

ρ

)
, (5.51)

dk+1 = dk + ρ
(
Dxk − uk+1

)
. (5.52)

Finally, by making xk → xk+1 and xk−1 → xk, we can rewrite Eqs. (5.50-5.52) as

xk+1 = (H∗H)−1
(
−ρD∗Dxk + D∗

(
ρuk − dk

)
− g

)
, (5.53)

uk+1 = prox ψ
ρ

(
Dxk+1 +

dk

ρ

)
, (5.54)

dk+1 = dk + ρ
(
Dxk+1 − uk+1

)
. (5.55)

Let x∗ denote a solution to Problem (5.37); from assumption (b), above, this solution
is unique. Since both algorithms converge in the primal variable, i.e., xk → x∗, we also
have that

∥∥xk+1 − xk
∥∥ → 0. With this in mind, by rearranging Eq. (5.53) as

H∗Hxk+1 + ρD∗Dxk = D∗
(
ρuk − dk

)
− g, (5.56)

we verify that the closer VMPD gets to x∗, the more similar this equation is to Eq. (5.41)
if one makes γ = ρ. In this sense, these methods can be said to be the “same” in the
limit.
There are four important differences between the two methods:
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1. ADMM requires the inversion of the matrix (H∗H + γD∗D), whereas VMPD re-
quires the inversion of the matrix H∗H. This fact may prove to be convenient
when using VMPD to solve optimization problems if operations involving D are
computationally challenging.

2. In order to guarantee that ADMM converges to a solution, its use usually requires
the matrix D to be full-rank if f and ψ are merely convex [61]. This is not the case
for VMPD, which makes no assumptions on this matrix.

3. If one makes Uk = H∗H + εkId in case the Hessian is indefinite, ADMM and
VMPD are the “same” in the limit only if εk → 0. If this condition is not verified,
the methods are not exactly the “same” in the limit.

4. The ranges of possible values of the parameters γ and ρ for which the methods
converge are not the same. In fact, the only restriction on γ for ADMM to con-
verge is that this parameter should be positive. Moreover, different choices for the
values of these parameters have a strong impact on how fast both methods are at
finding solutions in practice. Consequently, it is important to choose the values of
these parameters that correspond to the fastest versions of the methods. In Sub-
section 5.3.3, we provide some experimental evidence that both methods exhibit
similar speed of convergence if the values of γ and ρ are the same. The value of the
parameter γ needs to be hand-tuned, and it is not obvious which values correspond
to faster speeds of convergence for ADMM. Usually, the values of these parameters
are tuned via simple heuristics, appropriate to the problem at hand, or vary in each
iteration following simple strategies [91, 142]. We verified experimentally that the
parameter ρ is easier to set, since its range of possible values is bounded and, if
one picks its value to be close to one of the bounds, this usually corresponds to the
maximum speed of convergence for VMPD.

5.3.3. Experimental study

In this subsection, we experimentally show how ADMM and VMPD compare to each
other in the problem of image deblurring. We formulate it as an optimization problem
of the form of (1.9). The objective function of this problem is comprised of a quadratic
data-fitting term and a regularizer. We consider the regularizer to be isotropic total-
variation (Eq. (1.13) with p = 2). Let x1 and x2 be vectors in Rn, and let g : Rn →
]−∞,+∞] : (x1,x2) →

∑n
i=1 ‖([x1]i, [x2]i)‖2. The problem under study is a particular

case of Problem (5.37) if one makes f = 1
2 ‖H · −y‖2, ψ = λg, and D = [DT

h DT
v ]T , where

H ∈ Rn×n is a BCCB convolution matrix, and Dh ∈ Rn×n and Dv ∈ Rn×n are such
that the products by these matrices compute, respectively, the horizontal and vertical
first-order differences of a discrete image, with periodic boundaries. Note that D is not
full column rank and, consequently, ADMM may not converge. If we wished to have a
formal guarantee of convergence for this method, we could have modified the discrete
difference matrices, making them full rank, e.g., by adding to them εIk+d with a small
ε > 0.
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(a) (b)

Figure 5.3.: Observed (left) and estimated (right) images using VMPD.

We ran the experiments on the well-known cameraman image with size 256×256 pixels,
blurred with a low-pass filter. This filter was generated as follows: (a) we generated a
truncated Gaussian filter with support of size 5 × 5 and standard deviation

√
5, (b) we

added 1× 10−2 to the filter coefficient with the highest value, and (c) we normalized the
resulting filter, so that after the normalization its largest coefficient was 1. We created
the blurred image by performing a circular convolution of the sharp image with the
aforementioned filter. We then normalized the image and added i.i.d. Gaussian noise
with a BSNR of 50 dB. We used the modified version of the Hessian in VMPD by setting
ε = 10−3, and we fixed γ = ρ = 2 × 10−6, a value that yielded visually good estimated
images. The experiments were performed using MATLAB on an Intel Core i7 CPU
running at 3.20 GHz, with 32 GB of RAM.
We considered it quite probable that both methods would yield virtually identical

estimated images; see Section 3.3.1 for an explanation. In fact, the results for ADMM and
VMPD were essentially the same, in the sense that they were visually indistinguishable.
For the same reasons given in Section 3.3.1, we arbitrarily chose the result of ADMM
after 106 iterations as representative of the solution of Problem (5.37).
Figure 5.3 shows the result of VMPD. Fig. 5.4 illustrates the behaviors of both methods

during the optimization, which are very similar.

5.4. Proofs

This section includes the proofs of all the propositions, theorems, and corollaries of this
chapter. It starts with a preliminary result.

Preliminary result

Lemma 5.4.1. Let α ∈ ]0,+∞[ and let V ∈ Pα(X ). Then

‖V x+ (Id− V ) y‖2 = 〈V (V − Id) (x− y), x− y〉
+ ‖x‖2V − ‖y‖

2
V + ‖y‖2 , ∀x ∈ X , ∀y ∈ X .
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Figure 5.4.: RMSE of the estimated images as a function of running time, for both
methods.

Proof. Fix x and y in X . Then

‖V x+ (Id− V ) y‖2 = 〈V x, V x〉 + 2 〈V x, (Id− V ) y〉 + 〈(Id− V ) y, (Id− V ) y〉
= 〈V x, V x〉 + 2 〈V x, y〉 − 2 〈V x, V y〉 + 〈y, y〉 − 2 〈V y, y〉

+ 〈V y, V y〉
(i)
= 〈V x, V x〉 − 2 〈V x, V y〉 + 〈V y, V y〉 + 〈V x, x〉

+ 〈V y, y〉 − 〈V (x− y), x− y〉 + 〈y, y〉 − 2 〈V y, y〉
= 〈V (x− y), V (x− y)〉 + 〈V x, x〉 − 〈V y, y〉 − 〈V (x− y), x− y〉

+ 〈y, y〉
= 〈V (x− y), (V − Id) (x− y)〉 + 〈V x, x〉 − 〈V y, y〉 + 〈y, y〉 ,

(5.57)

where step (i) follows from the identity 〈V (x− y), x− y〉 = 〈V x, x〉−2 〈V x, y〉+〈V y, y〉.

Proof of Proposition 5.2.2

Fix x and y in D. By making V , Λ−1, (5.5) yields

α−1Id � V � µ−1Id. (5.58)
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By noting that R = (Id− V ) + V TΛ, we verify that

‖Rx−Ry‖2 = ‖(Id− V ) (x− y) + V (TΛx− TΛy)‖2

(i)
= 〈V (V − Id) ((TΛ − Id)x− (TΛ − Id) y), (TΛ − Id)x− (TΛ − Id) y〉

+ ‖TΛx− TΛy‖2V − ‖x− y‖
2
V + ‖x− y‖2

(ii)
= ‖(TΛ − Id)x− (TΛ − Id) y‖2V (V−Id)

+ ‖TΛx− TΛy‖2V − ‖x− y‖
2
V + ‖x− y‖2 , (5.59)

where step (i) follows from Lemma 5.4.1 and step (ii) follows from the fact that
V (V − Id) ∈ P0(X ), since α−1 ≥ µ−1 > 1. The nonexpansiveness of R implies that

0 ≥ ‖Rx−Ry‖2 − ‖x− y‖2 = ‖(TΛ − Id)x− (TΛ − Id) y‖2V (V−Id)

+ ‖TΛx− TΛy‖2V − ‖x− y‖
2
V . (5.60)

Consequently,

‖TΛx− TΛy‖2V ≤ ‖x− y‖
2
V − ‖(TΛ − Id)x− (TΛ − Id) y‖2V (V−Id) . (5.61)

Since, for any given z ∈ X , ‖z‖2V (V−Id) ≥
(
µ−1 − 1

)
‖z‖2V ,

‖TΛx− TΛy‖2V ≤ ‖x− y‖
2
V −

(
µ−1 − 1

)
‖(Id− TΛ)x− (Id− TΛ) y‖2V . (5.62)

The claim follows by noting that
(
µ−1 − 1

)
= 1−µ

µ .

Proof of Theorem 5.2.4

1) Straightforward.

2) Since x0 ∈ D and D is convex, Algorithm 17 produces a well-defined sequence in
D. By making V k , (Λk)

−1
, ∀k, (5.7) and [123, Lemma 2.1] yield, for all k,{(
αk
)−1Id � V k+1 �

(
µk
)−1Id,

(1 + ηk)V k � V k+1.
(5.63)

Line 5 of Algorithm 17 implies that, for all k,∥∥∥xk+1 − x∗
∥∥∥2

V k
=
∥∥∥TΛkx

k − TΛkx
∗
∥∥∥2

V k

(i)

≤
∥∥∥xk − x∗∥∥∥2

V k
− 1− µk

µk

∥∥∥(Id− TΛk)xk + (Id− TΛk)x∗
∥∥∥2

V k

=
∥∥∥xk − x∗∥∥∥2

V k
− 1− µk

µk

∥∥∥xk+1 − xk
∥∥∥2

V k
(5.64)

≤
∥∥∥xk − x∗∥∥∥2

V k
, (5.65)

99



5. Optimization algorithms

where step (i) follows from (5.63) and Proposition 5.2.2.

Since, for any given z ∈ X , we verify from (5.63) that

(1 + ηk) ‖z‖2V k ≥ ‖z‖
2
V k+1 , ∀k ∈ N, (5.66)

using (5.65), we get∥∥∥xk+1 − x∗
∥∥∥2

V k+1
≤ (1 + ηk)

∥∥∥xk+1 − x∗
∥∥∥2

V k
(5.67)

≤ (1 + ηk)
∥∥∥xk − x∗∥∥∥2

V k
.

3) Since
{
xk
}
is Fejér monotone with respect to Fix R relative to

{
V k
}
, the sequence{∥∥xk − x∗∥∥2

V k

}
converges [123, Proposition 3.2(i)]. Define

ζ , sup
k

∥∥∥xk − x∗∥∥∥
V k

< +∞. (5.68)

It follows from Line 5 of Algorithm 17 and (5.7) that, for all k,∥∥∥xk+1 − xk
∥∥∥2

V k
=
∥∥∥Λk

(
Rxk − xk

)∥∥∥2

V k

=

∥∥∥∥(Λk
) 1

2
(
Rxk − xk

)∥∥∥∥2

≥ αk
∥∥∥Rxk − xk∥∥∥2

. (5.69)

and, in view of (5.64), we can rewrite (5.67) as∥∥∥xk+1 − x∗
∥∥∥2

V k+1
≤ (1 + ηk)

(∥∥∥xk − x∗∥∥∥2

V k
− 1− µk

µk

∥∥∥xk+1 − xk
∥∥∥2

V k

)
≤ (1 + ηk)

∥∥∥xk − x∗∥∥∥2

V k
−
(

1− µk
)∥∥∥xk+1 − xk

∥∥∥2

V k

≤ (1 + ηk)
∥∥∥xk − x∗∥∥∥2

V k
− αk(1− µk)

∥∥∥Rxk − xk∥∥∥2

≤
∥∥∥xk − x∗∥∥∥2

V k
+ ζ2ηk − ε2

∥∥∥Rxk − xk∥∥∥2
. (5.70)

For every K ∈ N, by iterating (5.70) we can write that

ε2
K∑
k=0

∥∥∥Rxk − xk∥∥∥2
≤
∥∥x0 − x∗

∥∥2

V 0 −
∥∥xK+1 − x∗

∥∥2

V K+1 +

K∑
k=0

ζ2ηk

≤ ζ2 +
K∑
k=0

ζ2ηk. (5.71)
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Since
{
ηk
}
is absolutely summable, taking the limit as K → +∞ yields

∞∑
k=0

∥∥∥Rxk − xk∥∥∥2
≤ 1

ε2

(
ζ2 +

∞∑
k=0

ζ2ηk

)
<∞. (5.72)

Consequently, Rxk − xk → 0.

4) Let x be a weak sequential cluster point of
{
xk
}
. It follows from [11, Corollary

4.18] that x ∈ Fix R. In view of [123, Lemma 2.3] and [123, Theorem 3.3], the
proof is complete.

Proof of Theorem 5.2.5

We start by defining, for all k,


Ak , γkUkA,

Ck , γkUkC,

Φk , UkΛk,

and


pk , JAky

k,

qk , JAk
(
xk − Ckxk

)
,

sk , xk + Λk
(
qk − xk

) (5.73)

and by recalling some results derived by Combettes and Vũ [81]. We have from [81, Eq.
(4.8)] that

∥∥∥pk − qk∥∥∥
(Uk)−1

≤ 2β − ε
√
µU

∥∥∥bk∥∥∥ . (5.74)

Additionally, for any x∗ ∈ Z, from [81, Eq. (4.12)] we can write that

∥∥∥qk − x∗∥∥∥2

(Uk)−1
≤
∥∥∥xk − x∗∥∥∥2

(Uk)−1
− ε2

∥∥∥Cxk − Cx∗∥∥∥2

−
∥∥∥(xk − qk)− (Ckxk − Ckx∗)

∥∥∥2

(Uk)−1
. (5.75)

We now establish some identities. Line 6 of Algorithm 18 and (5.73) imply, for all k,
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that∥∥∥xk+1 − sk
∥∥∥

(Φk)−1
=
∥∥∥(xk + Λk

(
pk + ak − xk

))
−
(
xk + Λk

(
qk − xk

))∥∥∥
(Φk)−1

=
∥∥∥Λk

(
pk + ak − qk

)∥∥∥
(Φk)−1

≤
∥∥∥Λkak

∥∥∥
(Φk)−1

+
∥∥∥Λk

(
pk − qk

)∥∥∥
(Φk)−1

=

∥∥∥∥√(Uk)
−1
√

Λkak
∥∥∥∥ +

∥∥∥√Λk
(
pk − qk

)∥∥∥
(Uk)−1

≤
∥∥∥∥√(Uk)

−1

∥∥∥∥ ∥∥∥√Λk
∥∥∥ ∥∥∥ak∥∥∥ +

∥∥∥√Λk
∥∥∥

(Uk)−1

∥∥∥pk − qk∥∥∥
(Uk)−1

≤
√∥∥∥(Uk)

−1
∥∥∥√‖Λk‖ ∥∥∥ak∥∥∥ +

√∥∥∥(Uk)
−1
∥∥∥√‖Λk‖ ∥∥∥pk − qk∥∥∥

(Uk)−1

(5.74)
≤ √

µ

(
1
√
αU

∥∥∥ak∥∥∥ +
2β − ε
√
αUµU

∥∥∥bk∥∥∥)
≤ 1
√
αU

∥∥∥ak∥∥∥ +
2β − ε
√
αUµU

∥∥∥bk∥∥∥ (5.76)

and that∥∥∥sk − x∗∥∥∥2

(Φk)−1
=
∥∥∥(xk + Λk

(
qk − xk

))
− x∗

∥∥∥2

(Φk)−1

=
∥∥∥(Id− Λk

)(
xk − x∗

)
+ Λk(qk − x∗)

∥∥∥2

(Φk)−1

(i)
=
〈

Λk
(

Λk − Id
)(

qk − xk
)
, qk − xk

〉
(Φk)−1

+
∥∥∥qk − x∗∥∥∥2

(Φk)−1Λk
−
∥∥∥xk − x∗∥∥∥2

(Φk)−1Λk
+
∥∥∥xk − x∗∥∥∥2

(Φk)−1

= −
∥∥∥qk − xk∥∥∥2

(Uk)−1(Id−Λk)
+
∥∥∥qk − x∗∥∥∥2

(Uk)−1
−
∥∥∥xk − x∗∥∥∥2

(Uk)−1

+
∥∥∥xk − x∗∥∥∥2

(Φk)−1

≤
∥∥∥qk − x∗∥∥∥2

(Uk)−1
−
∥∥∥xk − x∗∥∥∥2

(Uk)−1
+
∥∥∥xk − x∗∥∥∥2

(Φk)−1

(ii)

≤ −ε2
∥∥∥Cxk − Cx∗∥∥∥2

−
∥∥∥(xk − qk)− (Ckxk − Ckx∗)

∥∥∥2

(Uk)−1

+
∥∥∥xk − x∗∥∥∥2

(Φk)−1
(5.77)

where step (i) follows from Lemma 5.4.1 and step (ii) from inequation (5.75).
Since, for any given z ∈ X and for all k, from [123, Lemma 2.1] we verify that

(1 + ηk)(Φk)
−1 � (Φk+1)

−1
and (1 + ηk) ‖z‖2

(Φk)−1 ≥ ‖z‖2(Φk+1)−1 , (5.78)
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using inequation (5.77), we get∥∥∥sk − x∗∥∥∥2

(Φk+1)−1
≤ (1 + ηk)

∥∥∥xk − x∗∥∥∥2

(Φk)−1

− ε2
∥∥∥Ckx− Cx∗∥∥∥2

−
∥∥∥(xk − qk)− (Ckxk − Ckx∗)

∥∥∥2

(Uk)−1
(5.79)

≤ (1 + ηk)
∥∥∥xk − x∗∥∥∥2

(Φk)−1
(5.80)

≤ δ2
∥∥∥xk − x∗∥∥∥2

(Φk)−1
, (5.81)

where δ , supk
√

1 + ηk.
We also define

εk , δ

(
1
√
αU

∥∥∥ak∥∥∥ +
2β − ε
√
αUµU

∥∥∥bk∥∥∥) . (5.82)

Finally, inequalities (5.76), (5.78) and (5.82), yield∥∥∥xk+1 − sk
∥∥∥2

(Φk+1)−1
≤ (1 + ηk)

∥∥∥xk+1 − sk
∥∥∥2

(Φk)−1
(5.83)

≤ (εk)2. (5.84)

1) We are now able to prove quasi-Fejér monotonicity of
{
xk
}
:∥∥∥xk+1 − x∗

∥∥∥
(Φk+1)−1

≤
∥∥∥xk+1 − sk

∥∥∥
(Φk+1)−1

+
∥∥∥sk − x∗∥∥∥

(Φk+1)−1

(i)

≤
√

1 + ηk
∥∥∥xk+1 − sk

∥∥∥
(Φk)−1

+
√

1 + ηk
∥∥∥xk − x∗∥∥∥

(Φk)−1

(ii)

≤ εk +
√

1 + ηk
∥∥∥xk − x∗∥∥∥

(Φk)−1

≤ (1 + ηk)
∥∥∥xk − x∗∥∥∥

(Φk)−1
+ εk, (5.85)

where step (i) follows from inequalities (5.83) and (5.80) and step (ii) follows from
inequality (5.83).
Since

{
ak
}
and

{
bk
}
are absolutely summable,

∑
k ε

k < +∞. From the assumptions
and from (5.78) and (5.85), in view of [123, Proposition 4.1(i)], we conclude that

{
xk
}

is quasi-Fejér monotone with respect to Z relative to
{

(Φk)
−1
}
.

2) As a consequence of 1) and [123, Proposition 4.1(ii)],
{∥∥xk − x∗∥∥

(Φk)−1

}
converges.

We define
ζ , sup

k

∥∥∥xk − x∗∥∥∥
(Φk)−1

< +∞. (5.86)
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Moreover,∥∥∥xk+1 − x∗
∥∥∥2

(Φk+1)−1
=
∥∥∥xk+1 − sk + sk − x∗

∥∥∥2

(Φk+1)−1

≤
∥∥∥sk − x∗∥∥∥2

(Φk+1)−1
+ 2

∥∥∥sk − x∗∥∥∥
(Φk+1)−1

∥∥∥xk+1 − sk
∥∥∥

(Φk+1)−1

+
∥∥∥xk+1 − sk

∥∥∥2

(Φk+1)−1

(i)

≤ (1 + ηk)
∥∥∥xk − x∗∥∥∥2

(Φk)−1
− ε2

∥∥∥Cxk − Cx∗∥∥∥2

−
∥∥∥(xk − qk)− (Ckxk − Ckx∗)

∥∥∥2

(Uk)−1
+ 2δζεk + (εk)2

≤
∥∥∥xk − x∗∥∥∥2

(Φk)−1
− ε2

∥∥∥Cxk − Cx∗∥∥∥2

−
∥∥∥(xk − qk)− (Ckxk − Ckx∗)

∥∥∥2

(Uk)−1
+ ζ2ηk + 2δζεk + (εk)2,

(5.87)

where step (i) follows from (5.79), (5.81), (5.86) and (5.83).
For every K ∈ N, by iterating (5.87), we can write that

ε2
K∑
k=0

∥∥∥Cxk − Cx∗∥∥∥2
≤
∥∥x0 − x∗

∥∥2

(Φ0)−1 −
∥∥xI+1 − x∗

∥∥2

(ΦI+1)−1 +
K∑
k=0

(
ζ2ηk + 2δζεk + (εk)2

)
≤ ζ2 +

K∑
k=0

(
ζ2ηk + 2δζεk + (εk)2

)
. (5.88)

Taking the limit from this inequality as K → +∞ yields

∞∑
k=0

∥∥∥Cxk − Cx∗∥∥∥2
≤ 1

ε2

(
ζ2 +

∑
n

(
ζ2ηk + 2δζεk + (εk)2

))
< +∞, (5.89)

since
{
ηk
}

and
{
εk
}

are absolutely summable. Following a similar reasoning, we can
show that

∞∑
k=0

∥∥∥(xk − qk)− (Ckxk − Ckx∗)
∥∥∥2

(Uk)−1
< +∞. (5.90)

Let x be a weak sequential cluster point of
{
xk
}
. In view of [123, Theo-

rem 3.3], it remains to be shown that x ∈ Z. Since
{∥∥Cxk − Cx∗∥∥2

}
and{∥∥(xk − qk)− (Ckxk − Ckx∗)

∥∥2

(Uk)−1

}
are absolutely summable, using the same argu-

ments as in [81, Eqs. (4.26)-(4.31)], then −Cx ∈ Ax, which is equivalent to x ∈ Z.
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Proof of Corollary 5.2.8

By [11, Theorem 20.40], ∂f is maximally monotone and, by [11, Corollary 18.16], ∇g
is β-cocoercive. Additionally, Argmin (f + g) = zer (∂f +∇g), by [11, Corollary 26.3].
Then the present corollary is an application of Theorem 5.2.5, by making A = ∂f and
C = ∇g.

Proof of Corollary 5.2.10

The proof provided here follows the structure of similar proofs [122, 68, 123] and is
organized as follows: (a) we show that Algorithm 20 is an instance of Algorithm 18, and
(b) that the assumptions of the present corollary satisfy the convergence conditions of
Theorem 5.2.5.
We start by introducing some notation. We denote by V the Hilbert direct sum of the

real Hilbert spaces Vj∈{1,...,N}, i.e., V =
⊕

j∈{1,...,N} Vj . We endow this space with the
following scalar product and norm, respectively:

〈·, ·〉V : (a, b) 7→
N∑
j=1

ωj 〈aj , bj〉 and ‖·‖V : a 7→

√√√√ N∑
j=1

ωj ‖aj‖2, (5.91)

where a = (a1, . . . , aj), b = (b1, . . . , bj) ∈ V . Additionally, we denote by K the Hilbert
direct sum K = X ⊕V and endow the resulting space with the following scalar product
and norm, respectively:

〈·, ·〉K :
(
(x,a), (y,b)

)
7→ 〈x, y〉 + 〈a,b〉V and ‖·‖K : (x,a) 7→

√
‖x‖2 + ‖a‖V ,

(5.92)
where x, y ∈ X .
We define, for all k ∈ N,

dk ∈ V ,
(
dk1, . . . , d

k
N

)
,

xk ∈ K ,
(
xk,dk

)
,

yk ∈ K ,
(
pk, qk1 , . . . , q

k
N

)
,

ak ∈ K ,
(
ak, bk1, . . . , b

k
N

)
,

ck ∈ K ,
(
ck, ek1, . . . , e

k
N

)
,

fk ∈ K ,
(

(Uk)
−1
ak, (Uk1 )

−1
bk1, . . . , (U

k
N )
−1
bkN

)
.

(5.93)

We also define the operators
A : K→ 2K : (x,a)→

(∑N
j=1 ωjL

∗
jaj − z +Ax

)
×
(
−L1x+ r1 +B1

−1a1

)
× . . .

×
(
−LNx+ rN +BN

−1aN
)
,

C : K→ K : (x,a)→
(
Cx,E−1

1 a1, . . . , E
−1
N aN

)
,

S : K→ K : (x,a)→
(∑N

j=1 ωjL
∗
jaj ,−L1x, . . . ,−LNx

)
,

(5.94)
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and9

Uk : K→ K : (x,a)→
(
Ukx, Uk1 a1, . . . , U

k
NaN

)
,

Vk : K→ K : (x,a)→
(

(Uk)
−1
x+

∑N
j=1 ωjL

∗
jaj , (U

k
1 )
−1
a1 + L1x, . . . , (U

k
N )
−1
aN + LNx

)
,

Tk : X → V : x→
(√

Uk1L1x, . . . ,
√
UkNLNx

)
,

Λk : K→ K : (x,a)→
(
Λkx,Λk1a1, . . . ,Λ

k
NaN

)
,

Φk : K→ K : (x,a)→
(
ΛkUkx,Λk1U

k
1 a1, . . . ,Λ

k
NU

k
NaN

)
.

(5.95)
Algorithm 20 can be written as

Algorithm 25: An alternative formulation of Algorithm 20.
1 Choose x0 ∈ X and d0

1 ∈ V1, · · · , d0
j ∈ Vj ;

2 k ← 1;
3 while stopping criterion is not satisfied do
4 for j ← 1, . . . , N do
5 Choose Ukj � 0, and Id � Λkj � 0;

6
(
Ukj

)−1 (
dkj − qkj

)
+Ljx

k−E−1
j dkj ∈ rj +B−1

j

(
qkj − bkj

)
+ ekj −

(
Ukj

)−1
bkj ;

7 dk+1
j = dkj + Λkj

(
qkj − dkj

)
;

8 end
9 Choose Uk � 0, and Id � Λk � 0;

10
(
Uk
)−1 (

xk − pk
)

+
∑N

j=1 ωjL
∗
j

(
dkj − qkj

)
− Cxk ∈

−z +A
(
pk − ak

)
+
∑N

j=1 ωjL
∗
jq
k
j + ck −

(
Uk
)−1

ak;
11 xk+1 = xk + Λk

(
pk − xk

)
;

12 k ← k + 1;
13 end

Lines 6 and 10 of Algorithm 25 can be rewritten as

V
(
xk − yk

)
−Cxk ∈ A(yk − ak) + Sak + ck − fk, (5.96)

whereas lines 7 and 11 can be rewritten as

xk+1 = xk + Λk
(
yk − xk

)
. (5.97)

Set, for all k,

bk ,
(
S + Vk

)
ak + ck − fk. (5.98)

9Note that the definition of the operator Vk in (5.95) is not the same as the equivalent operator in [81,
Eq. (6.10)].
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Using the same arguments as in [68, Eqs. (3.25)-(3.30)], it can be shown that expres-
sion (5.96) can be rewritten as

yk = J
(Vk)

−1
A

(
xk −

(
Vk
)−1 (

Cxk + bk
))

+ ak. (5.99)

In view of Eqs. (5.99) and (5.97), it is clear that Algorithm 20 is an instance of Algo-
rithm 18 if one makes γk = 1 for all k.

We now show that the assumptions of the current corollary satisfy the conditions of
Theorem 5.2.5. We start by noting that the operator A is maximally monotone [68, Eqs.
(3.7)-(3.9)] and the operator C is β-cocoercive [68, Eq. (3.12)].

Next, we show that the operators
(
Vk
)−1 and Λk satisfy assumptions (5.8) and (5.9)

for all k. It follows from the assumptions of the present corollary and [81, Lemma 3.1]
that

Uk+1 � Uk ∈ PαU (K) and
∥∥∥∥(Uk

)−1
∥∥∥∥ ≤ 1

αU
. (5.100)

Since, for all k, Uk ∈ S(K), than Vk ∈ S(K). Additionally, by noting that S is linear
and bounded, we verify, for all k, that

∥∥∥Vk
∥∥∥ ≤ ∥∥∥∥(Uk

)−1
∥∥∥∥ + ‖S‖ ≤ 1

αU
+

√√√√ N∑
j=1

‖Lj‖2 , ρ (5.101)

and that, for every x ∈ X

∥∥∥Tkx
∥∥∥2

V
=

N∑
j=1

ωj

∥∥∥∥√Ukj Lj√Uk (Uk)− 1
2
x

∥∥∥∥2

≤ ‖x‖2
(Uk)−1

N∑
j=1

ωj

∥∥∥√Ukj Lj√Uk∥∥∥2

= βk ‖x‖2
(Uk)−1 , (5.102)

where βk ,
∑N

j=1 ωj

∥∥∥√Ukj Lj√Uk∥∥∥2
,∀k. Then, following the arguments made in [81,
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Eq. 6.15], for every k and every x = (x, a1, . . . , aj) ∈ K, we obtain

〈
Vkx,x

〉
K

=
〈

(Uk)
−1
x, x

〉
+ 2

N∑
j=1

ωj 〈Ljx, aj〉 +

N∑
j=1

ωj

〈
(Ukj )

−1
aj , aj

〉

= ‖x‖2
(Uk)−1 +

N∑
j=1

ωj ‖aj‖2(Ukj )
−1 + 2

N∑
j=1

ωj

〈√
Ukj Ljx,

(
Ukj

)− 1
2
aj

〉

= ‖x‖2
(Uk)−1 +

N∑
j=1

ωj ‖aj‖2(Ukj )
−1

+ 2

〈(
(1 + δk)βk

)− 1
2

Tkx,
√

(1 + δk)βk
((

Uk1

)− 1
2
a1, . . . ,

(
UkN

)− 1
2
aN

)〉
V

(i)

≥ ‖x‖2
(Uk)−1 +

N∑
j=1

ωj ‖aj‖2(Ukj )
−1 −

 ∥∥Tkx
∥∥2

V
(1 + δk)βk

+ (1 + δk)βk
N∑
j=1

ωj ‖aj‖(Ukj )
−1


(ii)

≥ ‖x‖2
(Uk)−1 +

N∑
j=1

ωj ‖aj‖2(Ukj )
−1 −

‖x‖2(Uk)−1

1 + δk
+ (1 + δk)βk

N∑
j=1

ωj ‖aj‖(Ukj )
−1


(iii)
=

δk

1 + δk

‖x‖2
(Uk)−1 +

N∑
j=1

ωj ‖aj‖2(Ukj )
−1


≥ δk

1 + δk

∥∥∥Uk∥∥∥−1
‖x‖2 +

N∑
j=1

ωj

∥∥∥Ukj ∥∥∥−1
‖aj‖2


(iv)

≥ ξk ‖x‖2K

where step (i) follows from the identity 2 〈a,b〉 ≥ −‖a‖2 − ‖b‖2, step (ii) follows from
inequality (5.102), step (iii) follows from the fact that (1 + δk)βk = 1

1+δk
, and step (iv)

follows from assumption (5.22). Following the arguments made in [81, Eqs. (6.16)-(6.18)],
this last inequation implies that

sup
k

∥∥∥∥(Vk
)−1

∥∥∥∥ ≤ 2β − ε and
(
Vk+1

)−1
�
(
Vk
)−1
∈ P1/ρ(K), (5.103)

which satisfies assumption (5.8) of Theorem 5.2.5. It follows from the assumptions of the
present corollary that

sup
k

∥∥∥Λk
∥∥∥ ≤ 1, Λk+1 � Λk ∈ Pα(K), (5.104)

and
Φk+1 � Φk. (5.105)
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Moreover, it follows from [81, Lemma 3.1] that
∑

k ‖a‖K ≤ +∞,
∑

k ‖c‖K ≤ +∞, and∑
k ‖f‖K ≤ +∞. From Eqs. (5.98) and (5.101), it follows that

∑
k ‖b‖K ≤ +∞.

It is shown in [122, Eq. (3.13)] that under assumptions (5.13), zer (A + C) 6= ∅.
Additionally, following the arguments made in [122, Eqs. (3.21) and (3.22)], if (x∗,d∗) ∈
zer (A+C), then x∗ ∈ P and d∗ ∈ D. Then, the conditions of Theorem 5.2.5 are satisfied.
Consequently, we have a x∗ ,

(
x∗, d∗1, . . . , d

∗
j

)
such that x∗ ∈ zer (A+C) and xk w−→ x∗.

Proof of Corollary 5.2.11

By making, for every j, A = ∂g, C = ∇µ, Bj = ∂hj , and Ej = ∂lj , it is clear that
Algorithm 21 is an instance of Algorithm 20. The current corollary is proven by using
the same arguments as in [122, Theorem 4.2].

Proof of Corollary 5.2.13

Define, for every k ∈ N, 
yk = 2dk+1 − dk,

d̄k = γdk,

ȳk = γyk,

(5.106)

and note that Lines 6 and 7 of Algorithm 22 can be rewritten as

dk+1 = dk + xk+1 − prox h
γ

(
xk+1 + dk

)
=

1

γ
prox γh∗

(
γxk+1 + d̄k

)
. (5.107)

By following a similar reasoning to the one followed in Eqs. (5.50-5.55), we can then
rewrite Lines 4-7 of Algorithm 22 as

vk+1 = prox h
γ

(
xk + dk

)
(5.108)

dk+1 =
1

γ
prox γh∗

(
γxk + d̄k

)
(5.109)

pk = prox τg

(
xk − τ

(
∇f(xk) + γ

(
xk − vk+1 + dk+1

)))
(5.110)

xk+1 = xk + Λk
(
pk − xk

)
. (5.111)
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It follows from Eqs. (5.108) and (5.109) that

xk − vk+1 + dk+1 = xk − prox h
γ

(
xk + dk

)
+

1

γ
prox γh∗j

(
γxk + d̄k

)
= xk +

1

γ
prox γh∗j

(
γxk + d̄k

)
− xk − dk +

1

γ
prox γh∗j

(
γxk + d̄k

)
=

2

γ
prox γh∗j

(
γxk + d̄k

)
− dk

= 2dk+1 − dk (5.112)

= yk. (5.113)

Rewriting Eq. (5.110) using Eq. (5.113) yields

pk = prox τg

(
xk − τ

(
γyk +∇f(xk)

))
. (5.114)

Using (5.106), we can rewrite Eq. (5.112) as

ȳk = 2d̄k+1 − d̄k (5.115)

and Eq. (5.109) as

d̄k+1 = prox γh∗
(
γxk + d̄k

)
. (5.116)

We are now able to rewrite Eqs. (5.108)-(5.111) as shown in Algorithm 26, which is an
instance of Algorithm 21 if one makes N = 1,X = Rn,V = Rn, L1 = In, r1 = 0, z = 0,
and ∀k, Uk1 = γIn, U

k = τIn, e
k
1 = 0, bk1 = 0,Λk1 = In, c

k = 0, ak = 0, and if (5.26) is
satisfied for j = 1.

Algorithm 26: Algorithm 22 is an instance of Algorithm 21.
1 while stopping criterion is not satisfied do
2 d̄k+1 = prox γh∗

(
d̄k + γxk

)
;

3 ȳk = 2d̄k+1 − d̄k;
4 pk = prox τg

(
xk − τ

(
ȳk +∇f(xk)

))
;

5 xk+1 = xk + Λk
(
pk − xk

)
;

6 end

The current corollary is proven by invoking Corollary 5.2.11.

Proof of Proposition 5.3.1

If one makes, in Algorithm 20, and for every k and j, X = Rn, Vj = Rmj , A = ∂g,
Bj =

∂hj
ωj

, C = ∇f ,

Ej : d→

{
Vj , if d = 0,

∅, if d 6= 0,
(5.117)
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5.5. Conclusions

Lj = Dj , Λk = λkId, ak = 0, bkj = 0, ck = 0, ekj = 0, z = 0, and rj = 0, it is clear
that Algorithm 24 is an instance of Algorithm 20. The present proposition is proven by
invoking Corollary 5.2.10 and using the same arguments as in [122, Theorem 4.2].

5.5. Conclusions

In this chapter, we defined and analyzed operator-weighted averaged operators, and
showed how they can be used to construct a number of algorithms. These algorithms
have very broad applications and seem to be particularly suitable to address problems
with sparsity-inducing regularizers, as suggested by a simple experiment. Possible future
directions to explore are the possibility of relaxing two of the impositions on Λk—namely,
assumptions (5.5) and (5.10)— and the study of which problems are more suitable to be
tackled by these methods. We also presented a formalization of the idea that ADMM,
when used to solve `2+regularizer minimization problems, is very similar to a second-
order primal–dual method. Additionally, we provided some experimental evidence of this
idea.

111





Part III.

Publications

113





This section has been omitted in the present version.
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List of Acronyms

2-D two-dimensional

3-D three-dimensional

ADMM alternating-direction method of multipliers

ALI Advanced Land Imager

AM method by Almeida and Figueiredo [89]

BCCB block-circulant-circulant-block

BGS block-Gauss-Seidel

BPT binary partition tree

BSNR blurred-signal-to-noise ratio

BT Brovey transform method

BTTB block-Toeplitz-Toeplitz-block

CC cross correlation

CG conjugate-gradient method

CM method by Condat [67]

CNMF coupled non-negative matrix factorization

CS component substitution

DC direct-current

DFT discrete Fourier transform

EIA endmember-induction algorithm

EM electromagnetic

EO-1 Earth Observing-1 Mission

ERGAS erreur relative globale adimensionnelle de synthèse
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FE filter estimation

FFT fast Fourier Transform

FIHS fast intensity-hue-saturation fusion technique

GFPCA guided filter PCA

GS Gram-Schmidt spectral sharpening method

GSA Gram-Schmidt adaptive method

HPF high-pass filtering method

HSI-GDL-EIA HSI superresolution methodologies by global dictionary learning using
EIA

HSI-LDL-EIA HSI superresolution methodologies by local dictionary learning using EIA

HSI hyperspectral image

HySure hyperspectral superresolution method

i.i.d. independent and identically distributed

IHS intensity-hue-saturation

ISNR improvement in SNR

KKT Karush-Kuhn-Tucker

MAP maximum-a-posteriori

MRA multiresolution analysis

MSE mean-squared error

MSI multispectral image

MTF-GLP-HPM MTF-GLP with high-pass modulation

MTF-GLP MTF-generalized Laplacian

MTF modulation-transfer function

PAN panchromatic image

PCA principal-component analysis

PD positive definite

Proposed-AD proposed method with adaptive strategy
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PSD positive semidefinite

PSF point-spread function

RGB red-gree-blue

RMSE root-mean-squared error

S&M Starck-Murtagh low-pass filter

SALSA split augmented-Lagrangian shrinkage algorithm

SAM spectral angle mapper

SFIM smoothing-filter-based intensity-modulation method

SNR signal-to-noise ratio

SR superresolution

SSNM semismooth Newton method

SVD singular-value decomposition

SW sliding windows

TV total variation

UIQI universal image quality index

VCA vertex component analysis

VMPD variable-metric primal-dual method

VTV vector total variation

ZBS method by Zhang et al. [106]
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